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Hox Genes of the Direct-type Developing Sea
Urchin Peronella japonica

Yuko Hano, Akane Hayashi, Shoutaro Yamaguchi,
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Kakuma, Kanazawa, Ishikawa 920-1192, Japan

ABSTRACT—Peronella japonica is a direct-type developing sea urchin that metamorphoses in 3 days with-
out feeding, providing a good system to analyze developmental mechanisms especially at later larval stages
to metamorphosis. We surveyed the Hox genes of P. japonica by PCR and RT-PCR, and isolated 13 Hox-
type sequences. Phylogenetic analysis and database searches resulted in identification of all the P. japonica
orthologs of the Hox genes that have been reported in other sea urchins, plus 3 Hox-type genes: the Evx-
type, the Xlox-type genes, and an additional posterior Hox gene. This is the first report to show the Evx in
echinoderms. The present results revealed the putative Hox gene cluster of P. japonica, which contains
three anterior, four medial, and four posterior genes plus the Evx. The organization is essentially similar to
the vertebrate Hox cluster except for only a single gene for Hox4-5 types. The C-terminal amino acid se-
guence outside the homeodomain of Hox4/5 suggested that loss of Hox4 might have occurred in the echino-

derm lineage.

INTRODUCTION

The Hox gene cluster occupies a central position in cur-
rent concepts of the development and evolution of metazoan
body plans. It controls spatial patterning mechanisms along
the anterior/posterior axis. There exists a co-linearity between
the order of the Hox genes in the genome and the spatial
order of their domains of expression during development. This
co-linearity is widely conserved among insects, vertebrates,
and nematodes (McGinnis and Krumlauf, 1992; Salser and
Kenyon, 1994; Garcia-Fernandez and Holland, 1996). Fur-
thermore the presence of the Hox-type genes has been also
confirmed in nonbilaterian animals including cnidarians and
sponges (Schummer et al., 1992; Degnan et al., 1995). There-
fore the Hox system has been proposed to be the zootype, a
fundamental mechanism shared by all metazoans (Slack et
al., 1993).

In contrast to the majority of deuterostomes, echinoderms
have pentameral body plans and lack cepharic structures.
Echinoderms have a single Hox cluster (Popodi et al., 1996;
Mito and Endo, 1997, 2000). Martinez et al. (1999) have re-
cently characterized the gene organization by physical map-
ping in Strongylocentrotus purpuratus, and shown that the
echinoderm Hox cluster is essentially similar to those of the
chordates, despite of the radically altered body plan.
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For several phyla so far examined, the Hox genes are
expressed most clearly at the phylotypic stage: a particular
stage of embryonic development at which all the members of
the phylum show the maximum degree of similarity (Slack et
al,, 1993). In echinoderms, most of the Hox genes are not
used for the early embryonic development, whereas all are
expressed during the stage when the adult body plan is formed
in the imaginal rudiment (Arenas-Mena et al., 1998). These
observations strongly suggest that metamorphic larvae/juve-
niles may be the phylotypic stage of echinoderms. Thus the
explication of expression patterns of the echinoderm Hox
genes in the rudiment might give us a clue to elucidate their
evolutionary transformations from bilateral to penta-radial
structures.

Peronella japonicais a direct-type developing sea urchin.
It forms the two-armed pluteus larva but the metamorphosis
completes in 3 days without feeding (Okazaki, 1975). This
characteristic provides an excellent system to analyze expres-
sion patterns of the Hox genes both in the larva and in the
rudiment. Since there is no information yet about the P.
Jjaponica Hox genes, we surveyed the Hox genes by genomic
PCR as well as RT-PCR. In the present paper we isolated all
the P. japonica orthologs of the Hox genes that have been
reported in other sea urchins. In addition, three other Hox-
type genes were identified: the Evx- and Xlox-type genes, and
a further posterior Hox gene. This work will provide funda-
mental information to investigate roles of the Hox genes in
penta-radilal echinoderms.
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MATERIALS AND METHODS

Animal and gametes

The sea urchin Peronella japonica were collected near the Noto
Marine Laboratory, Kanazawa University. Gametes were obtained
by intracoelomic injection of 0.5 M KCI. Jamarine U (JSW; Jamarine
Laboratory) was used as artificial seawater throughout experiments.
After insemination, fertilized eggs were washed with JSW three times
and cultured at 25°C at a concentration of 50 embryos/ml in Petri
dishes without agitation.

Nucleic acid extraction

Genomic DNA was extracted from sperm of P. japonica. Dry
sperm was suspended in 20 vol of calcium-magnesium-free sea
water, and to the suspension 10 vol of DNA extraction buffer (0.15 M
NaCl/10 mM Tris-HCI, pH 8.0/10 mM EDTA/0.1% SDS) containing
100 pg/ml Proteinase K was added. The mixture was incubated at
55°C for 2 hr then 37°C for 16 hr, and followed by extraction with
phenol and then phenol/chloroform. DNA was precipitated by adding
2 vol of ethanol to the mixture, and dissolved in TE. Total RNA was
extracted from eggs or larvae with LiCl/urea method of Auffray and
Rougeon (1980). Poly (A)" RNA was isolated with Oligotex-dT30
(Roche) from total RNA.

Synthesis of cDNA

Complementary DNA was synthesized using 3' RACE System
(Gibco BRL) from a mixture of poly(A)" RNAs that were extracted
from all the larval stages at 6 hr-intervals from the unfertilized egg to
the metamorphosis (0—72 hr after fertilization).

PCR, RT-PCR, and 3' RACE

Four degenerated primers, FO, F, R1, and R2, were used to am-
plify Hox fragments of P. japonica. FO and F, forward primers, cor-
responded to partially overlapping amino acid sequences, QLTELEK
and LELEKEF, in the first helix of the homeodomain of the Hox genes,
respectively. On the other hand, R1 and R2, reverse primers, located
to the sequences, FONRRMK and KIWFQNR, in the third helix,
respectively. Sequences of the primers were as follows. FO; 5'-
CARYTNACNGARYTNGARAA-3’, F; 5-YTNGARYTNGARAAR-
GARTT-3', R1; 5-TTCATNCKNCKRTTYTGRAA-3', R2; 5'-CKRTT-
YTGRAACCADATYTT-3'. To amplify the engrailed gene fragment,
we designed another primer, EN-F (5'-GAYGARAARMGNCCNMG-
3’), which located at N-terminal of the homeodomain, and used with
R2 primer. We amplified the 3’ end of Pj3 cDNA using 3' RACE Sys-
tem (Giboco BRL) and Pj3-specific primer (5'-CGATATCTCACCC-
GACG-3).

For each 25 pl reaction, 100 ng of genomic DNA or cDNA syn-
thesized from10 ng of poly (A)* RNA was used as a template.
Reaction mixtures contained 10 puM of each primer, 200 uM of
deoxynucleotides, 1 unit of Tag DNA polymerase (Toyobo), and 1
unit of anti-Taqg antibody (Toyobo) in a buffer supplied by the manu-
facturer. PCR cycles for genomic PCR and RT-PCR were as follows:
2 min at 94°C, 33 cycles (30 sec at 94°C, 2 min at 50°C, 30 sec at
72°C), 20 min at 72°C. In the 3' RACE, we elongated the extension
time from 30 sec to 2 min. After PCR, the reaction mixture was
applied to an agarose gel, and electrophoresed in TAE buffer. Gels
were stained with ethidium bromide (0.5 pg/ml) to detect PCR products.

Sequencing PCR products

PCR products from excised agarose gel bands were purified using
MERmaid Kit (Bio 101) or Prep-A-Gene DNA Purification Systems
(BioRad), and ligated into pT7/T-vector (Novagen). Plasmid DNAs
were purified using Plasmid Miniprep Kit (BioRad) and subjected to
sequencing reactions (Amersham). Sequences were determined with
an automated sequencer LI-COR 4200.
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Sequence analysis

Derived amino acid sequences of P. japonica Hox-type genes
were compared to those of Tripneustes gratilla (Dolecki et al., 1986;
Dolecki et al., 1988; Wang et al., 1990), Paracentrotus lividus (Di
Bernardo et al., 1994), Lytechinus variegatus (Ruddle et al., 1994),
Heliocidaris erythrogramma (Popodi et al. 1996), Hemicentrotus
pulcherrimus (Ishii et al., 1999), Strongylocentrotus purpuratus
(Martinez et al., 1999), Asterina minor (Mito and Endo, 1997), Oxy-
comanthus (Comanthus) japonicus, and Stegophiura sladeni (Mito
and Endo, 2000). Multiple alignments and neighbor-joining analyses
were performed using CLUSTAL W (Thompson et al., 1994).

RESULTS AND DISCUSSION

PCR-amplification of Hox genes

In order to survey the Hox genes of P. japonica, we PCR-
amplified the Hox-type sequences using genomic DNA and
cDNA as templates. Complementary DNA was synthesized
from poly (A)" RNA that was prepared from all the larval stages
from the unfertilized egg to the metamorphosis. We first used
two degenerated primers, F and R1, corresponding to the first
and the third helices of the homeodomain, which are highly
conserved among the Hox genes (Buirglin, 1994). As the re-
sult, 11 Hox-type sequences of 85 nucleotides long were iden-
tified, and named Pj1-Pj11 in order of the determination. For
their sequence determination, at least two clones of identical
sequence were independently obtained to exclude the possi-
bility of mutations introduced by PCR. Still a variation was
observed on Pj7 sequence, where T was replaced by C at the
nucleotide 53. It is reported that the DNA of S. purpuratus
displays 4-5% intraspecific sequence polymorphism (Britten
et al., 1993). Since the substitution was synonymous in the
amino acid sequence, we interpreted that the variation was
due to a polymorphic allele.

We next used other primer sets, F/R2 for genomic PCR
and FO/R1 for RT-PCR, and use of the latter set resulted in
identification of two more Hox-type sequences, Pj12 and Pj13.
Fig. 1 shows the sequences of Pj1-Pj13 (homeobox positions
60-144), the derived amino acid sequences (homeodomain
positions 21-48), and also the number of clones obtained by
genomic PCR and RT-PCR.

Phylogenetic analysis of Hox genes

So far eight Hox genes as well as other types of the
homeobox genes have been isolated from several sea urchin
species, and they have been termed Hbox1-12in order of the
isolation. Recently Martinez et al. (1999) showed the organi-
zation of the Hox gene cluster in the S. purpuratus genome,
and renamed the Hox genes as SpHox 1-11/13b on the basis
of both their order in the cluster and their paralogous affinities
with the vertebrate Hox genes. In order to infer paralog
(cognate) groups to which the P. japonica Hox-type genes
belong, we compared sequences of Pj1-Pj13 with those of
the Hox genes of S. purpuratus and other sea urchins. Fig. 2
shows a neighbor-joining tree based on 25 amino acids of the
homeodomains from P. japonica and 6 other species of sea
urchins. This tree showed the corresponding relationship as
follows. Pj3, Pj6, and Pj10 were identical with Hox4/5, Hox®6,
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ATCGCCCGCG
ATCGCACAAG
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CAGGTTAAAA
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TATGG
TCTGG
TTTGG
TATGG
TCTGG
TCTGG
TCTGG
TTTGG
TTTGG
TCTGG
TATGG
TCTGG
TCTGG

Pj1  CCTTTACAAC ATGTACCTCA CGCGTGATCG GCGCTCGCAT
Pj2  CCATTTCAAC CGCTACCTGA CGCGGAAGCG ACGCATCGAG
Pj3  CCATTTCAAC CGATATCTCA CCCGACGTCG ACGGATCGAG
Pj4  CCGACTCAAT AAATACCTCT GTCGACCCCG TCGGATCGAG
Pj5  TCAGTCCAAC ATGTACCTGA CTCGAGATCG CCGGACCAAG
Pj6  TCACTTCAGT CGTTACGTGA CGCGAAGGAG ACGCTTCGAG
Pj7  CCTCTTCAAC ATGTACTTGA CCCGAGATCG ACGCCTCGAC
Pj8  TGCACGAGAG AACTATGTGT CCCGTCCGAA GAGGTGTGAG
Pj9  CCACTTCAAC AAATACATCT CACGACCTCG ACGCATCGAA
Pj10 CCACTTCAAC CGCTACCTAA CGCGACGACG ACGGATCGAA
Pj11 CAATTTCAAC CGGTATTTGT GCCGACCTCG GAGGGTCGAA
Pj12 TCATTTCAAC AAATATCTGA CGAGAGCAAG GAGAATAGAG
Pj13 CCAAGAAAAC ATGTACCTGA CGAGGGACCG AAGGAATAGG
B
Pj1 LYNMY LTRDR RSHIA RALSL TERQV KIW
Pj2 HFNRY LTRKR RIEIA QAVCL TERQI KIW
P33 HFNRY LTRRR RIEIA HALGL TERQI KIW
Pj4 RLNKY LCRPR RIEIA DFLEL SERQV KIW
P35 QSNMY LTRDR RTKMF TGPRL TERQV KIW
Pj6 HFSRY VTRRR RFEIA QSLGL SERQI KIW
Pj7 LFNMY LTRDR RLDIA RMLSL TERQV KIW
P8 ARENY VSRPK RCELA TALNL PETTI KVW
Pj9 HFNKY ISRPR RIELA AMLNL TERHI KIW
Pj10 HFNRY LTRRR RIELS HLLGL TERQI KIW
Pj11 NFNRY LCRPR RVEMA KSLSL TERQI KIW
Pj12 HFNKY LTRAR RIEIA AMLGL NETQV KIW
Pj13 QENMY LTRDR RNRIS EALNL SERQV KIW
Fig. 1.

C genomic PCR RT-PCR

13 clones

SO0 RORVORFLPOPD

(A) P. japonica Hox-type sequences at positions 60—144 of the homeobox, (B) the derived amino acid sequences at positions 21-48 of

the homeodomain, and (C) the number of clones obtained by genomic PCR and RT-PCR.

and Hox7 of S. purpuratus, respectively. Pjl1, Pj2, Pj4, Pj5,
Pj7, Pj10, Pj11, and Pj12 were strongly suggested to be
orthologous to Hox11/13a, Hox8, Hox2, Hox11/13b, Hox6,
Hox9/10, Hox7, Hox3, and Hox1, respectively, with high per-
centages of support (82-99%). Pj8, Pj9, and Pj13, however,
had no counterparts in other sea urchin Hox genes reported
so far. As is shown in Fig. 2, our PCR survey of the P. japonica
Hox genes succeeded in identification of all the orthologs of
sea urchin Hox genes. Pj8, 9, and 13 isolated in this study
were considered to be novel Hox-type genes in sea urchins.

Database searches revealed that Pj8 and Pj9 were 93%
and 100% identical in the amino acid sequence with the mouse
Evx-1/2 and the Amphioxus Xlox, respectively. The Evx-1/2
are homologs of the Drosophila even-skipped gene that con-
trols segmentation along the anterior/posterior axis. They are
not only similar to the Hox genes in their homeodomain se-
guences, but each linked to the 5' end of Hox gene clusters
(Burglin, 1994). A cnidarian Evx-like gene also locates adja-
cent to a Hox-like gene (Miller and Miles, 1993). Therefore
the sequence similarity between the Evx and Hox genes re-
flects tandem duplication. This explains the reason the prim-
ers designed for the Hox genes amplified not only the Hox
genes but also the Evx-type gene (Pj8) in the present study.
Similarly, itis also the case with isolation of the Xlox-type gene
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(Pj9). The Xloxwas first isolated as a Hox-type gene that does
not map to the Hox cluster, and was later shown to be a mem-
ber of the ParaHox gene cluster, a duplicated sister of the
Hox gene cluster (Brooke et al., 1998). This is the first report
to show the Evx-type gene in the echinoderm, while Xlox-type
sequences have been isolated in the PCR survey of the Hox
genes of other classes of echinoderms (Mito and Endo, 1997,
2000).

In vertebrates, five paralogous groups of posterior genes,
PG9-13, have been identified. Phylogenetic analysis of the
homeodomain sequences suggests that two ancestral poste-
rior genes, one for PG9-10 and another for PG11-13, had al-
ready existed before divergence of protostomes and
deuterostomes (Zhang and Nei, 1996). Tandem duplication
of the ancestral genes is thought to have occurred in the deu-
terostome lineage to increase posterior genes in number.
Amphioxus has at least four posterior genes, two of which are
orthologous to the vertebrate PG9-10, but the rest two genes
are uncertain in the relationship to the vertebrate paralog
groups (Garcia-Fernandez and Holland, 1996). In sea urchins,
three posterior genes, Hox9/10, Hox11/13a, and Hox11/13b,
have been isolated. Although Hox9/10 is very similar to the
chordate PG9-10 genes, there is no specific orthologous re-
lationship between Hox11/13and the chordate PG11-13 genes
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Fig. 2. Neighbor-joining tree based on 25 amino acids of the homeodomains from P. japonica (Pj), S. purpuratus (Sp), H. erythrogramma (He),
T. gratilla (Tg), L. variegatus (Lv), P. lividus (Pl), and H. pulcherrimus (Hp). The tree is rooted with corresponding sequence of P. japonica
engrailed (QQSNYLTEQRRRTLAKELTLSESQI). Percentage of support (50% or higher) in 1000 bootstrap searches is shown on the branches.
SpHox is a new name of sea urchin Hox genes based on its order in the cluster and its affinities with vertebrate Hox genes. Numerals of Pj are
in order of the determination in the present study, while those of other sea urchins except Sp indicate Hbox numbers (previous names of sea
urchin Hox genes).

(Martinez et al., 1999). In the present study, four posterior gested the most similar to the posterior Hox genes by data-
genes were identified from P. japonica: three orthologs of the base searches as well as phylogenetic analysis (Fig. 2). Re-
known posterior genes and a novel one (Pj13). Pj13 was sug- cently Mito and Endo (2000) have reported that at least four
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cognate groups are recognizable among the echinoderm pos-

terior genes, and designated this new group HboxP9. Figure

3 shows a neighbor-joining tree of the echinoderm posterior

genes including HboxP9. It suggested, however, that Pj13
Hox11-1 33 might be rather related to Hox11-13b than to HboxP9 since
the C. japonicus Hbox?7 is considered to be an ortholog of S.
purpuratus Hox11-13b (Mito and Endo, 2000). These obser-
vations imply that some of these posterior gene duplications
may have occurred independently in different lineage within a
phylum or even a class.

SS10

Hox9-10 cJ10

Hox9-10 Pj1

Pj7 52 Hox11-13a

Zs Putative Hox gene cluster
CJ4/SS4 91

Based on the estimation of orthology to the known Hox
genes mainly from S. purpuratus, the present results revealed
Pjs the putative Hox gene cluster of P. japonica (Fig. 4). The pu-
tative cluster contains three anterior, four medial, and four
posterior Hox genes plus the Evx, although their physical link-
age remains to be elucidated. They represent all the paralog
groups of vertebrate Hox clusters except for a single gene of
cJP9 cJ7 Hox4-5 types. The feature that the cluster lacks either Hox4
or Hox5 has been also suggested in other classes of echino-

Hox11-13b

62\ 50
50

85 Hox11-13b

54

AMP9

Fig. 3. Neighbor-joining tree of the echinoderm posterior Hox genes.
Percentage of support (50% or higher) in 1000 bootstrap searches is
shown on the branches. Pj13, a novel sea urchin posterior gene, may
be rather related to Hox11-13b than to HboxP9, the fourth posterior

0.1 group identified in the sea star A. minor (AM), the feather star C.
Japonicus (CJ), and the brittle star S. sladeni (SS). Numerals of AM,
CJ, and SS indicate Hbox numbers (see Fig. 2).

SSP9

HboxP9

vertebrate posterior medial anterior

—|va|—|13|—l12|-—|11|-—|1o|--L9}-§—| 8= 7 6} 5 4H 3= 2} 1 }—

S. purpuratus
—-|11/13bH11/13a|—|9/1o]—-H 8 H 7H 6 Has I-———I 32 MH1p—

P. japonica

--{ Pjs }--uuul Pi13|-u| Pis |n{ Pj1 }uuuu' Pj7 }uuué.l sz I..I Pj"ol-u{ Pj6 }--I Pj3 |.---uuu.§u{ Pj11}u| Pj4 |--{ Pj15|uuu

? : 2

Amphioxus paraHox Cdx [Xiox}- Gsx

Fig. 4. Organization of the vertebrate Hox cluster, S. purpuratus Hox cluster, Amphioxus ParaHox cluster, and the putative Hox cluster of P.
Japonica. Each box indicates a Hox gene, and the number in the box shows the vertebrate paralog group. The vertebrate cluster is based on
Birglin (1994), and the S. purpuratus cluster is on Martinez et al. (1999). The Amphioxus ParaHox cluster is by Brooke et al. (1998).
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C-terminal
Homeodomain 1 2 3 4 5 6 7 8 9
Hox4 L PNTK R S
Hox5 K K
P 3 N VK SISOQLTI

Fig. 5. Conserved and paralog characteristic residues of Hox4 and
Hox5 in the C-terminal side of the homeodomain, and the correspond-
ing amino acid sequence of Pj3. Amino acids represented in bold are
conserved by all vertebrate members of the paralog group, while those
in white are conserved by Drosophila as well as vertebrates (Sharkey
et al. 1997). Note that Pj3 (Hox4/5) sequence includes one of the
Hox5-characterisitic lysine residues, but does not match the Hox4-
characteristic residues at all.

derms including sea stars, feather stars, and brittle stars (Mito
and Endo, 1997, 2000). On the other hand hemichordates
contain both Hox4 and Hox5 (Pendleton et al., 1993). Since
the hemichordate is suggested to be a sister group of the echi-
noderm (Wada and Satoh, 1994), loss of either Hox4 or Hox5
may be characteristic of the echinoderm Hox cluster, a
synapomorphy of echinoderms.

Paralog groups of the vertebrate Hox clusters can be
correlated with some of the Hox genes of Amphioxus, sea
urchins, and even Drosophila. This fact indicates that the
paralogous relationships have still remained distinctive over
hundreds million of years. Sharkey et al. (1997) have identi-
fied characteristic residues that define the different paralog
groups of the Hox genes. Although Hox4 and Hox5 are al-
most identical in their homeodomain sequences, both con-
serve several paralog-characteristic residues outside the
homeodomain. In order to infer a paralog group to which Pj3
(Hox4/5) belongs, we isolated the 3’ end of Pj3 cDNA by 3’
RACE and compared the derived amino acid sequence with
those of Hox4 and Hox5. Fig. 5 shows the conserved paralog-
characteristic residues in the C-terminal amino acid sequences
outside the homeodomain of Hox4 and Hox5, and the corre-
sponding sequence of Pj3. Four continuous residues of ‘PNTK’
are characteristic to Hox4, which are conserved in Drosophila
as well as all vertebrate members. On the other hand, Hox5
conserves two characteristic lysine residues among verte-
brates. Pj3 sequence included one of the Hox5-characteristic
lysine residues, but it did not match widely conserved Hox4-
characteristic residues at all. We inferred from the sequence
that Pj3 may be Hox4 rather than Hox5.
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