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ABSTRACT

 

—Gonadotropin-releasing hormone (GnRH) is well known as the central regulator of the repro-
ductive system through its stimulation of gonadotropin release from the pituitary. Studies on GnRH have
demonstrated that GnRH has both stimulatory and inhibitory effects on cell proliferation depending on the
cell type; however, the mechanisms of these effects remain to be elucidated. Against this background we
used four human cell lines, TSU-Pr1, Jurkat, HHUA and DU145, and newly found that GnRH increased
or decreased the colony-formation depending on the cell line. Moreover, we demonstrated that the stim-
ulatory and inhibitory effects of GnRH exhibit distinct ligand selectivities. In order to investigate the molec-
ular basis of these phenomena, analyses of the expression of human GnRH receptors were performed
and, moreover, the effects of GnRH were analyzed under conditions in which human GnRH receptors were
knocked down by the technique of RNA interference. Consequently, it was found that human type II GnRH
receptor, which had been suspected of being nonfunctional because of alterations in its sequence, is
involved in the effects of GnRH on cell proliferation. In this article, the influence of the autocrine activities
of the cells is also reviewed, focusing on the characteristics of substances secreted from the four cell lines.
Based on recent studies of GnRH and its receptors and our up-to-date findings, the evolutionary implica-
tions of GnRH action are discussed.
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INTRODUCTION

 

GnRH was originally identified as a hypothalamic
decapeptide which promotes gonadotropin secretion from
pituitary gonadotropes and was named gonadotropin-releas-
ing hormone (Matsuo 

 

et al

 

., 1971; Amoss 

 

et al

 

., 1971).
Thereafter, multiple GnRH isoforms and multiple types of
GnRH receptors were reported in a wide range of organisms
in addition to vertebrates (Millar 

 

et al

 

., 2004) and broad dis-
tribution of them in extrapituitary tissues and organs has
been demonstrated (Klausen 

 

et al

 

., 2002; Millar, 2003; Ike-
moto 

 

et al

 

., 2003, 2004). Through these observations the
study of extrapituitary GnRH systems has become one of
the important topics regarding the physiological significance
of GnRH. The concept of extrapituitary GnRH systems is
also important in terms of the evolution of the reproductive

system. Now that the existence of GnRH has been con-
firmed in invertebrates, which have no pituitary gland, it is
suggested that in these organisms GnRH acts directly on
the gonads (Terakado, 2001; Kusakabe 

 

et al

 

., 2003). In our
previous studies (Kogo 

 

et al

 

., 1995, 1999a, b; Park 

 

et al

 

.,
1999), GnRH receptor mRNA expression was demonstrated
in the rat ovary, which strongly suggests the idea that GnRH
is involved in the induction of follicular atresia and ovulation
(Table 1). There have also been other studies suggesting
that GnRH directly controls gonadal function. (Gobetti 

 

et al

 

.,
1992; Fasano 

 

et al

 

., 1995; Takekida 

 

et al

 

., 2003; Sifer 

 

et al

 

.,
2003), however clear evidence supporting this suggestion
has not been obtained yet. Moreover, in addition to the
direct effects on gonads, it has been reported that GnRH
may act as a neuromodulator or an immunomodulator. (Eis-
then 

 

et al

 

., 2000; Oka, 2002; Ford 

 

et al

 

., 2003; Azad 

 

et al

 

.,
1997; Enomoto 

 

et al

 

., 2001; Chen 

 

et al

 

., 2002). Although a
number of studies have been performed on these effects of
GnRH, little is known about the molecular mechanisms and
physiological settings in which GnRH exerts its activities in
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extrapituitary tissues or organs.
There are interesting 

 

in vitro

 

 studies about the diverse
functions of GnRH. GnRH promotes or inhibits cell prolifer-
ation depending on the cell type. As for the promotive
effects of GnRH, effects on thymocytes, splenocytes, and
lymphocytes have been reported (Marchetti 

 

et al

 

., 1989;
Batticane 

 

et al

 

., 1991; Azad 

 

et al

 

., 1997). Regarding inhibi-
tory effects, effects against hormone-related tumors are well
known, and these effects are now applied clinically (Schally,
1999; Grundker 

 

et al

 

., 2002). These opposite effects of
GnRH on cell proliferation are very interesting, but it has
remained unknown whether GnRH has such activities in
physiological settings, mainly because most previous stud-
ies were performed using cancer cell lines and pharmaco-
logical doses of GnRH. However, recently, the effects of
GnRH on the cell proliferation of non-tumor cells, as well as
on cell adhesion, cell migration, and cytoskeletal remodeling
have been reported (Chen 

 

et al

 

., 2002; Romanelli 

 

et al

 

.,
2004; Davidson 

 

et al

 

., 2004) and the physiological roles of
the effects of GnRH on cell proliferation are being reconsid-
ered.

In fact, there is evidence for the effects of GnRH on
gonadotrope cell proliferation (Sakai 

 

et al

 

., 1988; Kakar 

 

et
al

 

., 1997; Miles 

 

et al

 

., 2004), and thus GnRH may originally
act as one of the cell growth regulators of gonadotropes.
Moreover, there is a possibility that the activities of GnRH
that alter their direction of effects depending on the cell type
underlie the diverse physiological functions of GnRH. We
have focused on the two opposite effects of GnRH on cell
proliferation, particularly the relationship between these
effects and the diverse functions of GnRH, and investigated

the molecular mechanisms of the effects of GnRH on cell
proliferation. So far, we have found stimulatory and inhibi-
tory activities of the physiological dose of GnRH on the
colony-formation of cells using an originally established
method, the colony-forming efficiency assay (Enomoto 

 

et
al

 

., 2001 and 2004a, b). The experimental models used in
our studies are TSU-Pr1 (from human prostatic carcinoma,
Iizumi 

 

et al

 

., 1987), Jurkat (from human mature leukemia,
Gills and Watson, 1980), DU145 (from human prostatic car-
cinoma, Mickey 

 

et al

 

., 1977; Stone 

 

et al

 

., 1978), and HHUA
(from human endometrial carcinoma, Ishiwata 

 

et al

 

., 1984)
cell lines. Recently, interesting findings about the mecha-
nisms of the two opposite effects of GnRH have been
obtained by adaptation of the technique of RNA interference
to our original assay system (Enomoto 

 

et al

 

., 2004b). More-
over, we have obtained strong evidence for the influence of
autocrine activities of the cells on the GnRH effects
(Enomoto 

 

et al

 

., 2001, 2004a). In this article, our up-to-date
findings about the mechanisms of the stimulatory and inhib-
itory effects of GnRH will be reviewed, focusing on human
GnRH receptors and the influence of autocrine activities of
the cells on the GnRH effects. The evolutionary implication
of the GnRH activities on cell proliferation will be also dis-
cussed.

 

1. Effects of GnRH on colony-formation
1-1. Stimulatory and inhibitory effects of GnRH

 

A number of studies have demonstrated that various
carcinomas of breast, ovary, endometrium, prostate, pan-
creas and liver origin respond to GnRH and its analogues
(Schally, 1999). It has also been reported that treatment of

 

Table 1.

 

GnRH receptor mRNA expression on the rat ovary.

Tissues
Strength and localization

of the signal
Remarks

Primordial follicles No siganal

Granulosa
cells of
healthy
follicles

Preantral follicles
Weak

Throughout

Early antral follicles the estrous cycle

Medium antral follicles
Peripheral part of granulosa layer*

Became prominent Mainly diestrous day 1

Large antral and
Very strong

Diestrous day 2

Graafian follicles and proestrus

Ovulated follicles
Strong

(on estrus 0:00)

Theca cells of healthy follicles None, sometimes very weak

Corpora
lutea

First generation Moderate

Second generation
Degenerative change

Third generation

Atretic
follicles

Granulosa cells Very strong throughout their atretic process

Theca cells Moderate in progressed atretic follicles

Interstitial cells Moderate

* Expression of the mRNA become prominent in peripheral part of granulosa cells, where the nuclei of the positive
cells were elongated. No significant  signals were detected in the inner part of the granulose layer.
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thymocytes, splenocytes, and lymphocytes with GnRH and
its analogues increased their proliferative activity (Marchetti

 

et al

 

., 1989; Batticane 

 

et al

 

., 1991; Azad 

 

et al

 

., 1997). In
these studies the effects of GnRH on cell proliferation were
investigated by measuring tumor weight and/or volume, the
rate of cell proliferation, or 

 

3

 

H-thymidine incorporation (Red-
ding and Schally, 1983; Sharoni 

 

et al

 

., 1989; Pati and
Habibi, 1995; Dondi 

 

et al

 

., 1998). However, to our knowl-
edge, there have been no studies that compared stimulatory
with inhibitory effects. One of the reasons for this was the
lack of a method that makes it possible to detect both effects
sensitively. Thus, we first established an original assay, the
colony-forming efficiency assay (Enomoto 

 

et al

 

., 2001). The
colony-forming efficiency assay is based on limiting dilution
analysis with minor modifications. The detailed procedure
was described in our previous report (Enomoto 

 

et al

 

., 2001).
Fig. 1 shows the effects of GnRH-I on the colony-form-

ing efficiency. The slope of the linearly regressed line repre-
sents the colony-forming efficiency. In TSU-Pr1 and Jurkat
cells, GnRH-I increased the colony-forming efficiency,
whereas, in DU145 and HHUA cells, the colony-forming effi-
ciency was decreased by GnRH-I. We also examined the
effects of GnRH-I on the rate of cell proliferation and con-

firmed that the response to GnRH of each cell line was the
same as that on colony-forming efficiency. This fact sug-
gests that the colony-forming efficiency assay is useful for
studying the effects of GnRH on cell proliferation. Moreover,
it is very interesting that TSU-Pr1 and DU145, which are
derived from human prostatic carcinoma, exhibited the
opposite responses to GnRH stimulation.

 

1-2. Distinct ligand selectivities of the stimulatory and
inhibitory effects

 

As described above, we succeeded in detecting the
stimulatory and inhibitory effects of GnRH on the colony-
forming efficiency. To clarify the characteristics of these
effects, ligand selectivities were investigated using the four
cell lines. As GnRH ligands, we used GnRH-I and II and
Cetrorelix (synthetic type I GnRH receptor antagonist)
(Reissmann 

 

et al

 

., 2000). Humans GnRHs consist of GnRH-
I and II (Matsuo 

 

et al

 

., 1971; Amoss 

 

et al

 

., 1971; Miyamoto

 

et al

 

., 1984). The results revealed that the stimulatory and
inhibitory effects exhibited distinct patterns (Fig. 2). Fig. 2a
and 2b show representative results. In Jurkat cells, the pat-
tern is similar to that of TSU-Pr1 cells, and in HHUA the
pattern is similar to that of DU145 (data not shown). In pos-
itively responding cell lines (TSU- Pr1 and Jurkat) GnRH-I
was more effective (about 10 fold) than GnRH-II, and
Cetrorelix had no effect. On the other hand, in negatively
responding cell lines (DU145 and HHUA) GnRH-II was
much more effective (1,000 to 10,000 fold) than GnRH-I.
Interestingly, Cetrorelix behaved as an agonist. Fig. 2c lists
the EC

 

50

 

 values of all nonlinearly fitted curves. Based on the
classical ligand-receptor theory, this result strongly suggests

 

Fig. 1.

 

Effects of GnRH-I (final concentration, 100 pM) on the col-
ony-forming efficiency of TSU-Pr1 (

 

a

 

), Jurkat (

 

b

 

), DU145 (

 

c

 

), and
HHUA (

 

d

 

) cells (

 

**

 

p

 

<0.01). The number of cells plated per well was
1, 2, 4, and 8 cells in the cases of TSU-Pr1, DU145, and HHUA cells
and 5, 10, 20, and 40 cells in the case of Jurkat cells.

 

Fig. 2.

 

Ligand selectivities for colony-formation of TSU-Pr1 (

 

a

 

) and
DU145 (

 

b

 

) cells. The cell densities were 8 cells per well. The
abscissa and ordinate represent the concentration of GnRH ligand
and the fraction of colony-containing wells (the number of colony-
containing wells per total wells), respectively. Results are expressed
as means

 

±

 

SE (n=4). 

 

c.

 

 EC50 values of all nonlinearly fitted curves
in TSU-Pr1, Jurkat, DU145, and HHUA cells.
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that the stimulatory and inhibitory effects of GnRH are medi-
ated by different GnRH receptors. Thus, we investigated this
possibility as described in the following chapter.

 

2. Two types of human GnRH receptors
2-1. Expression of human GnRH receptors

 

Among the human GnRH receptors, type I (hGnRHR-1)
and II (hGnRHR-2) GnRH receptors are known. Type I
receptor was cloned first and has been well characterized
(Kakar 

 

et al

 

., 1992), and recently the genomic loci encoding
the human type II GnRH receptor has been cloned (Fau-
rholm 

 

et al

 

., 2001). However, previous studies revealed a
puzzling fact about the human type II GnRH receptor gene.
The protein coding sequences contain a frameshift mutation
and a TGA stop codon, compared with other primate type II
GnRH receptor sequences that were demonstrated to be
functional (Faurholm 

 

et al

 

., 2001; Neill, 2002; Morgan 

 

et al

 

.,
2003). So far, no full-length sequence of a human type II
receptor that is translated into protein has been discovered.

In 2001, Millar 

 

et al

 

. demonstrated that human type I
GnRH receptor and marmoset type II GnRH receptor, which
has 90% amino acid identity with the deduced human type
II GnRH receptor amino acid sequence, exhibited distinctly
different patterns of ligand selectivity, as shown Fig. 2. This
result strongly suggests that human type II GnRH receptor
is functional as a receptor, and we first presumed that the
distinctly different patterns of ligand selectivity between the
stimulatory and inhibitory effects should be due to the
expression of a different GnRH receptor subtype. Thus we
performed expression analyses of human GnRH receptors
in the four cell lines. For hGnRHR-1, a single PCR product
was amplified with one primer set in all four cell lines (upper
panel in Fig. 3). In contrast, for hGnRHR-2, two PCR prod-
ucts were amplified with one primer set in all four cell lines
(lower panel in Fig. 3). The results of direct sequencing
demonstrated that the longer PCR product was identical
with the human type II GnRH receptor (GeneBank acces-
sion No. AY077708) (Van Biljon 

 

et al

 

., 2002), and the lower
one was identical with the human type II GnRH receptor
splice variant (hGnRHR-2v) (GeneBank accession No.
AY081843) (Neill, 2002). As shown in Fig. 3, all four cell
lines expressed hGnRHR-1, 2, and 2v, which suggests that

the opposite responses to GnRH stimulation may not be due
to the differences of expressed GnRH receptor subtypes.

 

2-2. Involvement of each human GnRH receptor in the
effects of GnRH

 

In the expression analyses, no clear differences
between positively responding cell lines (TSU-Pr1 and Jur-
kat) and negatively responding cell line (DU145 and HHUA)
were observed. Next we examined the effects of GnRH-I
and II and Cetrorelix on colony-forming efficiency under the
condition that the expression of each of the human GnRH
receptors was suppressed individually by the technique of
RNA interference (RNAi) using p

 

Silencer

 

 2.0-U6, a short
hairpin interfering RNA (shRNA) expression vector (Ambion
Inc., Austin, TX). This technique efficiently induces
sequence-specific mRNA degradation and thereby sup-
presses the target gene expression (Brummelkamp 

 

et al

 

.,
2002; Hannon, 2002; Shi, 2003; Dykxhoor 

 

et al

 

., 2003), and
thus the roles of human type II GnRH receptor and its splice
variant can be investigated even if they don’t function as
proteins. Table 2 shows the summary of the complete
results. As a negative control, we used the p

 

Silencer

 

 nega-
tive control vector encoding a shRNA whose sequence is
not found in the mouse, rat, or human genome databases
(Ambion Inc., Austin, TX), and the resultant colony-forming
efficiencies were the same as those of non-transfected cells
(data not shown).

As shown in Table 2, when hGnRHR-1 was knocked-
down, all three GnRH ligands failed to show significant
effects and the colony-forming efficiencies were similar to
those of the non-transfected cells. When hGnRHR-2 was
knocked-down, GnRH-II and Cetrorelix had no significant
effects, and only GnRH-I was significantly effective. For
hGnRHR-2v, quite interesting and remarkable results were
obtained.When hGnRHR-2v was knocked-down, the direc-
tion of  response to the stimulation of GnRH-I and II in TSU-

 

Fig. 3.

 

Expression of human GnRH receptor 1 (the upper panel), 2
and 2 variant (the lower panel) in TSU-Pr1, Jurkat, DU145, and
HHUA cells. RT- are negative controls in which non-reverse tran-
scribed mRNA of each cell line was used as the template. The left-
hand lane contains the molecular marker.

 

Table 2.

 

Summary of the results when each human GnRH receptor
was knocked down.

 

TSU-Pr1 Jurkat DU145 HHUA

non-transfected
cells

 

GnRH-I

 

+ + – –

 

GnRH-II

 

+ + – –

 

Cetrorelix n.e. n.e.

 

– –

 

hGnRHR-1
knocked down

 

GnRH-I n.e. n.e. n.e. n.e.

GnRH-II n.e. n.e. n.e. n.e.

Cetrorelix n.e. n.e. n.e. n.e.

 

hGnRHR-2
knocked down

 

GnRH-I

 

+ + – –

 

GnRH-II n.e. n.e. n.e. n.e.

Cetrorelix n.e. n.e. n.e. n.e.

 

hGnRHR-2v
knocked down

 

GnRH-I

 

– – – –

 

GnRH-II

 

– – – –

 

Cetrorelix

 

– – – –

 

Normal cells means non-transfected cells. +, significant stimulatory
effect of GnRH (p<0.05); –, significant inhibitory effect of GnRH
(p<0.05); n.e., no significant effect of GnRH.
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Pr1 and Jurkat cells was reversed from a positive effect to
a negative one, and Cetrorelix behaved as an agonist. To
the best of our knowledge, this result is the first demonstra-
tion that a receptor can regulate the direction of the
response to the ligand stimulation. As for DU145 and HHUA
cells, no such alteration was observed upon the suppression
of hGnRHR-2v. Although hGnRHR-2v mRNA is expressed
in DU145 and HHUA cells, it appears to have no function in
these cells. This fact may be due to the balance of the
expression levels of hGnRHR-2 and 2v. In fact, as shown in
Fig. 3, in DU145 and HHUA cells these levels are quite dif-
ferent, whereas in Jurkat and TSU-Pr1 cells they are much
less different; however, further studies will be necessary to
clarify this point.

Summarizing our results focusing on each receptor,
hGnRHR-1 was indispensable for the effectiveness of all
three GnRH ligands, and hGnRHR-2 was necessary for the
effectiveness of GnRH-II and Cetrorelix. Furthermore, hGn-
RHR-2v plays a role in mediating the stimulatory effects of
GnRH-I and II and the effectiveness of Cetrorelix. One pos-
sible explanation for these complicated results is that hGn-
RHR-2 and 2v directly interact with hGnRHR-1 and form
hetero-dimers or oligomers. In fact, many recent studies
have provided evidence that G-protein coupled receptors
(GPCRs) can exist as either dimers or higher order oligo-
mers (Milligan 

 

et al

 

., 2004; Pfleger 

 

et al

 

., 2004). Promotion
or inhibition of signal transduction by ligand stimulation and
alteration of G-protein selectivity by receptor dimerization
have been also reported (AbdAlla 

 

et al

 

., 2001a, b). More-
over, there is evidence that co-expression of GPCR pairs
can generate distinct ligand-binding sites (Maggio 

 

et al

 

.,
1998). Fig. 4 shows one of the proposed structural models
for GPCR receptor dimers, 5,6-domain swapped dimers
(Gouldson 

 

et al

 

., 1998). Each transmembrane alpha helix is
represented as a circle. The hinge loop represents intracel-
lular loop 3. As shown in this figure, another binding pocket
is generated by receptor dimerization. This could account
for our distinct patterns of ligand selectivities. We should
also consider the possibility of cross-talk among intracellular
signalings and functions as non-coding RNAs (Storz, 2002)
of hGnRHR-2 and 2v mRNAs to modulate the signaling

mediated by hGnRHR-1. However, in any case, further
investigations of the human type II GnRH receptor and the
splice variant will be required to elucidate the detailed mech-
anisms by which human type II GnRH receptor and its splice
variant are involved in the effects of GnRH on cell prolifera-
tion.

 

3. Influence of autocrine activities of the cells on the
GnRH effects

 

The colony-forming efficiency assay is a method that
can examine cell proliferation at the low cell density (10 to

 

Fig. 4.

 

Schematic models of the monomer and the 5,6-domain
swapped dimer of G-protein coupled receptor. Each transmem-
brane alpha helix is represented as a circle. The hinge loop repre-
sents intracellular loop 3. The presumed binding pockets are shown
as grey areas.

 

Fig. 5.

 

Effects of Buserelin (final concentration, 5 pg/ml) on the
rate of cell proliferation of Jurkat (

 

a

 

) and HHUA (

 

b

 

) cells when cul-
ture medium was exchanged every 24 hours. Results are expressed
as means

 

±

 

SE (n=4; 

 

**

 

p

 

<0.01; 

 

***

 

p

 

<0.001). The experimental
schedule is illustrated in 

 

c

 

.
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400 cells per ml). In our previous study, the effects of GnRH
on the rate of cell proliferation at high cell density (20,000
cells per ml) were also investigated and interesting facts
about the effects of GnRH were found. The assay was done
as follows. At first, Jurkat and HHUA cells were inoculated
in flat-bottomed 24-well plates (20,000 cells per ml). The day
when cells were inoculated was defined as Day 0. Buserelin,
a synthetic GnRH agonist was added (final concentration, 5
pg/ml) only after 24 hours or every 24 hours. In results,
Buserelin had no significant effect on the rate of cell prolif-
eration of either Jurkat or HHUA cells (data not shown).
However, as shown in Fig. 5c, when Buserelin was added
with daily exchange of the culture medium, the rate of cell
proliferation was significantly increased or decreased in Jur-
kat or HHUA cells, respectively (Fig. 5a and 5b). From these
results we presumed that the accumulation of substances
secreted from the cells into the medium influenced the
effects of GnRH on cell proliferation. To confirm this possi-
bility, we measured the colony-forming efficiency in the
presence of conditioned media of Jurkat, HHUA and TSU-

Pr1 cells. Conditioned medium is the medium in which cells
have been cultured for several days, and thus it contains
substances secreted from cells during the culture period.
The experimental groups prepared are shown in Fig. 6a.
The detailed procedure of this experiment was described in
our previous report (Enomoto 

 

et al

 

., 2001).
As shown in Fig. 6b, the colony-forming efficiencies in

the presence of conditioned media of Jurkat, HHUA and
TSU-Pr1 cells were classified into three patterns. In the case
of Pattern 1, in the presence of the conditioned medium, the
colony-forming efficiency (Group 3 and 4) was nearly equal
to that of Group 2, being independent of the addition of
GnRH. In contrast, in the case of Pattern 2, the colony-form-
ing efficiency in the presence of conditioned medium (Group
3 and 4) was nearly equal to that of Group 1, being inde-
pendent of the addition of GnRH. In Pattern 3, the presence
of the conditioned medium had no effect. Fig. 6c shows the
comprehensive results based on the classification of the
three patterns. These results indicate that the conditioned
medium of Jurkat cells mimicked the GnRH activity,
whereas that of HHUA cells inhibited it. In other words, Jur-
kat cells secrete a GnRH-like substance and HHUA cells
secrete a GnRH-inhibiting substance in terms of the effects
on cell proliferation. However, the conditioned medium of
TSU-Pr1 cells inhibited the GnRH activity only in TSU-Pr1
cells themselves. In HHUA cells, it had no effect, whereas
in Jurkat cells, it severely decreased the colony-forming effi-

 

*,

 

 The colony-forming efficiency was severely decreased and statistically
analyzable data could not be obtained.

 

Fig. 6.

 

Summary of the effects of conditioned media derived from
Jurkat, HHUA and TSU-Pr1 cells on the colony-forming efficiencies.

 

a.

 

 Experimental groups. 

 

b.

 

 Three patterns of the influence of condi-
tioned media. 

 

c.

 

 Summarized results of the effects of each condi-
tioned medium on the colony-forming efficiencies of Jurkat, HHUA,
and TSU-Pr1 cells.

 

Fig. 7.

 

Cartoon illustrating the response of cells simulated by
GnRH at low and high cell density.
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ciency and statistically analyzable data could not be
obtained. Summarizing these results, the conditioned media
of Jurkat and HHUA cells consistently affected the GnRH
activities regardless of the cell type, whereas that of TSU-
Pr1 had cell type-dependent effects. Our results suggest
that each of these three cell lines secrete a distinct sub-
stance that affects GnRH activities, and these substances
will be identified in future studies.

Our interpretation of the results introduced in this chap-
ter is schematized in Fig. 7. At low cell density, GnRH pro-
motes or suppresses cell proliferation depending on the cell
type. In contrast, at high cell density autocrine factors of the
cells mimic or inhibit the GnRH activity and the effects of
GnRH are masked. From this point of view, the colony-form-
ing efficiency assay is a sensitive method that can limit the
effects of autocrine activity of the cells.

 

EVOLUTIONARY IMPLICATIONS

 

In this article, we reviewed our recent findings about the
mechanisms of the stimulatory and inhibitory effects of
GnRH on cell proliferation, focusing on the involvement of
GnRH receptors. The detailed role of each receptor remains
to be elucidated. In addition, we described the autocrine
activities of the cells that affect the GnRH effects. Identifica-
tion of these factors is important to clarify the effects of
GnRH on cell proliferation 

 

in vivo

 

.
Viewing the historical progress on studies of GnRH, we

are reminded of one of the bioactive substances in the hypo-
thalamus-pituitary-gonadal axis, namely activin. Activin was
originally isolated based on its activity in stimulating follicle-
stimulating hormone (FSH) release from the anterior pitu-
itary (Ling 

 

et al., 1986; Vale et al., 1986). In addition to its
endocrine function, activin has been found to possess vari-
ous activities in different biological systems, e.g., erythroid
differentiation, nerve cell survival, Xenopus laevis embryonic
mesoderm induction, bone growth promotion, and soma-
tostatin induction (Mathews, 1994). Subsequently, it was
found that activin regulates a wide variety of cellular events,
including cell proliferation, differentiation, and apoptosis. For
example, in addition to endocrine function in the pituitary,
activin also controls the activity of the hypothalamus and
ovary, indicating that activin has profound autocrine and
paracrine effects on the female reproductive system (Peng
and Mukai, 2000). GnRH was originally identified as a hypo-
thalamic decapeptide that promotes gonadotropin release,
and thereafter a number of studies have strongly suggested
that it has various physiological activities, such as neuro-
modulation, immunomodulation, and regulation of follicular
atresia and ovulation. Moreover, it was demonstrated that
GnRH regulates cell proliferation, cell migration, and cell
attachment. Based on these similarities between activin and
GnRH, the idea that GnRH may have roles in embryogene-
sis and morphogenesis occurs to us. In fact, there have
been several reports suggesting that GnRH may play a sub-
stantial autocrine or paracrine role in human fertilization,

early embryonic development, and implantation (Seshagiri
et al., 1994; Casan et al., 1999; Raga et al., 1999). From
these points of view, our studies of the molecular mecha-
nisms of the GnRH actions on cell proliferation will provide
important clues for clarifying the physiological roles of
GnRH, particularly in embryogenesis and morphogenesis.
Moreover, extending our findings about human GnRH
receptor signalings to other species will lead to a compre-
hensive understanding of the GnRH system, including the
GnRH system in invertebrates, and clarification of the evo-
lution of the reproductive system.
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