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Ecosystem Engineering Impact of Limnoperna fortunei
in South America

Gustavo Darrigran* and Cristina Damborenea

CONICET, División Zoología Invertebrados (GIMIP), Museo de La Plata (FCNyM – UNLP),

Paseo del Bosque, 1900 La Plata, Argentina

Limnoperna fortunei, or golden mussel, has invaded aquatic ecosystems in the Americas following 

it introduction from Southeast Asia. It is not only an aggressive invasive species, it is also a very 

effective ecosystem engineer, altering both ecosystem structure and function, and causes great 

ecological and economic impacts. This paper describes its impact as an ecosystem engineer (on 

benthic communities and the water column). A review of the existing scientific literature is pre-

sented, and the impact and the mechanisms by which the golden mussel modifies, maintains, and 

creates new environmental conditions in the invaded South American inland freshwater environ-

ments are analyzed. Understanding the ecosystem engineering roles of L. fortunei is important for 

its management and/or control in the invaded areas, and in cases of future invasions.
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INTRODUCTION

The effects of global change and trade globalization on 

the biosphere have spurred an increase in bioinvasions and 

their subsequent impacts on ecosystems (Lockwood et al., 

2007), which entail the structural transformation of natural 

environments. The geographic scale, frequency, and 

number of species involved in such changes have increased 

enormously over the past few decades as a consequence of 

the expansion of worldwide commerce and fluvial transport 

of goods (IUCN, 2000).

Presently, introduction of foreign species is the main 

cause of biodiversity loss, followed by habitat destruction 

(IUCN, 2000). This negative impact on the environment 

affects three essential components of biodiversity: land-

scape, species, and genetic structure (Carlton, 1996). Con-

tinental invading bivalves are similarly important due to their 

impacts on man-made structures and on natural systems.

The invasion by Limnoperna fortunei (Dunker, 1857), 

the golden mussel (Bivalvia: Mytilidae) is one exemplary 

model of bioinvasion in the Neotropical region. This species 

is an epifaunal freshwater mussel, filter-feeding, gregarious, 

with planktonic larvae, short life span, rapid growth, early 

sexual maturity, and high fecundity. It is native to rivers and 

creeks in China and Southeast Asia. It invaded Hong Kong 

in 1965 (Morton, 1973), Japan (Kimura, 1994) and Taiwan 

(Ricciardi, 1998) in the 1990s. It was first recorded in America 

in 1991 along the Argentine Bagliardi Beach, on the 

southern margin of the Río de la Plata estuary (35°55′S-

57°49′W) (Pastorino et al., 1993). Darrigran and Pastorino 

(1995) suggested that the non-intentional introduction of this 

species into the area was via ballast water of ocean vessels.

Since the invasion, it has dispersed upstream within in 

the Plata and Guaíba basins (Mansur et al., 2003) at a rate 

of 240 km yr –1 (Darrigran et al., 2007). Human activity and 

the hydrosedimentological and chemical conditions of the 

environment necessitated assessment of the potential 

spread of L. fortunei in the area (Belz, 2009).

Several non-native freshwater mollusk species have 

been introduced to South America (Darrigran and Pastorino, 

2004). Some of these are considered invasive species, e.g. 

Corbicula fluminea (Müller, 1774) (Darrigran, 2002). How-

ever, of these L. fortunei is the most aggressive freshwater 

invader in South America. It is the only freshwater bivalve in 

this region with a planktonic larval stage that attaches in 

high densities to hard substrates (Darrigran, 2002). Similar 

to Dreissena polymorpha (Pallas, 1771) (Karatayev et al., 

2002), its life history enhances its ability as an invader and 

allows it to become enormously abundant when introduced 

into a new water body. This invasive species also impacts 

on man-made structures, both in South America (Darrigran 

and Damborenea, 2005, 2006; Darrigran, 2010) and Japan 

(Ohkawa et al., 1999; Matsui et al., 2001; Nagaya et al., 

2001; Goto et al., 2001; Matsui et al., 2002).

Ecosystem engineers are organisms that change the 

abiotic environment by physically altering its structure. As a 

consequence, they often – but not invariably – have effects 

on other members of the biota and their interactions, and 

consequently on overall ecosystem processes. The eco-

system engineering concept connects a number of important 

ecological and evolutionary concepts, and is particularly rel-
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evant to environmental management (Gutiérrez and Jones, 

2008).

Based on such concepts, and on the fact that the 

invaders that will have the largest impacts are those that 

directly modify ecosystems, and thus have cascading effects 

on the resident biota (Crooks, 2002), this article describes L. 

fortunei as an important ecosystem engineer in freshwater 

systems. Although little is known about its biology and inter-

actions, it is estimated that – like D. polymorpha in the 

northern Hemisphere (Karatayev et al., 2007) – this species 

aggregates into beds, thus modifying the nature and com-

plexity of the substrate in a way similar to its related marine 

taxa (Borthagaray and Carranza, 2007). Upon invading the 

Plata basin, the golden mussel had an impact on different 

communities, altering the composition of the benthic fauna 

(Darrigran et al., 1998; Sylvester et al., 2007; Sardiña et al., 

2008), predator diets (Penchaszadeh et al., 2000; García 

and Protogino, 2005; Sylvester et al., 2007), and physical 

conditions of the soil and water column (Sylvester et al., 

2005, 2006).

ECOLOGICAL IMPACTS

To accurately assess the ability of the golden mussel as 

an ecosystem engineer, we should consider both spatial and 

temporal variables (Fig. 1). Local effects (e.g., on the ben-

thic community and on predatory fish) should first be 

assessed and then extrapolated to system-wide effects 

(Karatayev et al., 2007). Likewise, the impact on the ecosys-

tem derived from the filtering rate of golden mussel popula-

tions should also be considered (Sylvester et al., 2006).

The system-wide effects depend not only on the charac-

teristics of the water bodies (invasibility), but also of the 

invasiveness of the golden mussel (Hicks, 2004.). The 

impact produced at the beginning of the invasion will be 

modified over time. In the case of the golden mussel, the 

impact does not seem to be capable of attaining temporal 

stability. The highest density is recorded during the early 

invasion period; it then fluctuates prior to reaching stability 

at lower density (Mansur et al., 2003). This process takes 

about ten years (Darrigran et al., 2003).

Impact of L. fortunei on benthic communities

Dense L. fortunei populations have a major impact on the 

structure of macroinvertebrate communities (Fig. 1). Studies 

carried out in different climate regions and on different sub-

strates (Darrigran et al., 1998; Sylvester et al., 2007; Sardiña 

et al., 2008; Marçal and Callil, 2008) have shown that habitat 

differences exert less influence on community structure than 

the presence of dense populations of golden mussel.

The great majority of mussels are important ecosystem 

engineers in benthic systems because they aggregate into 

beds, thus modifying the nature and complexity of the sub-

strate (Borthagaray and Carranza, 2007). Communities of 

benthic invertebrates recorded in the areas invaded by L. 

fortunei (Darrigran et al., 1998) are therefore similar to those 

developed on experimental frameworks (Sylvester et al., 

2007). The results of these studies suggest that the changes 

occurring in these communities are characterized by an 

increment in macroinvertebrate richness species – domi-

nated by Oligochaeta, Nematoda and Hirudinea – with the 

development of mussel beds. Higher densities of live mus-

sels show an increase in the density of some associated 

taxa– Oligochaeta, for instance, especially benefit from the 

feces and pseudofeces produced by the L. fortunei (Sardiña 

et al., 2008), and Hirudinea species benefit from the greater 

food supply (Darrigran et al., 1998).

These studies agree in pointing out that some of the 

species associated with L. fortunei are more abundant (e.g.

Heleobia piscium, Nais variabilis, Helobdela adiastola and 

H. hialina), and also that there is an increase of some taxa 

at the expense of others (Darrigran et al., 1998; Sylvester et 

al., 2007).

Fig. 1. General pathways of engineering effects by the golden mussel. Positive (+) and negative (–) effects are indicated. Direct (solid 

arrows) and indirect (dashed arrow) impacts of Limnoperna fortunei on invaded aquatic ecosystems. Dark gray: Effects on abiotic vari-

ables; light gray: Effects on biotic variables (modified from Sousa et al., 2009).
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The golden mussel shows a suite of physical and bio-

logical attributes that influence the structure of macroinver-

tebrate assemblages. It deposits sediments as agglutinated 

feces and pseudofeces. These biodeposits provide a food 

source for other invertebrates, and this organic enrichment 

of substrata alters the local distribution and abundance of 

benthic faunas. Mollusk shells are abundant, persistent, and 

ubiquitous physical structures in aquatic habitats (Gutiérrez 

et al., 2003). These authors state that colonization of a 

shelled habitat depends on individual shell traits and the 

spatial arrangement of shells, which in turn are determinant 

of the access of organisms to resources, and of the degree 

to which biotic or abiotic forces are modulated.

The invasion of South American basins by L. fortunei

increases the colonizable substrate with interstitial spaces 

as well as the amount of organic matter in the sediments. 

Sardiña et al. (2008) carried out an experimental study in 

order to examine the influence of this newly created habitat 

on benthic invertebrate communities. They showed that the 

lowest abundance and diversity of benthic invertebrates are 

recorded in substrates lacking golden mussels. Abundance 

and diversity increase on surfaces with empty valves. On 

these surfaces, the macroinvertebrate taxa have the highest 

diversity and abundance. Oligochaetes are an exception to 

this rule, as they are significantly more abundant on sub-

strates with live mussels (Sardiña et al., 2008), where 

oxygen levels are probably low within the interstitial spaces 

of the mussel shells due to bacterial decomposition of the 

accumulated biodeposits. This favors the presence of oli-

gochaete populations. High biomass values of benthic inver-

tebrates – showing no significant difference – are recorded 

on both surfaces, i.e., those with dead and live mussels. 

This indicates that physical attributes of the environment, as 

much as biological attributes of the golden mussel, influence 

the structure, diversity, and abundance of the benthic com-

munity. Spatially complex surfaces and lower organic matter 

content of the sediments associated with the filter-feeding 

mussels tend to support richer faunal communities as they 

provide a higher number of microhabitats and niches. 

Clumped mussels have abundant interstitial spaces that 

serve as disturbance and predation refugia for small organ-

isms (Darrigran, 2002).

It should be mentioned that dense coverage of hard 

surfaces by mussels may reduce or displace native species 

(Fig. 1) (Darrigran and Damborenea, 2005). Darrigran et al. 

(1998) studied in the field the alteration in abundance and 

species richness of communities of benthic invertebrates, 

and concluded that some endemic species that were abun-

dant before the invasion (e.g., Gastropoda, such as 

Gundlachia concentrica and Chilina fluminea) decreased in 

numbers over time. The abundance of other species (the 

gastropod Heleobia piscium and annelid species) increased 

in direct proportion to the densities of L. fortunei.

It is expected that species of benthic macroinvertebrates 

with similar habits may associate with mussels, regardless 

of regional climate. Invasion by L. fortunei may result in 

elimination of regional differences in epifaunal species 

(Darrigran, 2002). If we consider human activity on biotas, 

the result would be a more homogenized biosphere with 

lower diversity at regional and global scales (McKinney and 

Lockwood, 1999; Olden et al., 2004). Most species are 

declining as a result of human activity (‘losers’), while a 

much smaller group is becoming more numerous (“winners”) 

(Lockwood et al., 2007). Homogenization is defined as an 

increase in biota similarities over time (Rahel, 2002).

Biotic homogenization often exhibits scale dependence 

(Rooney et al., 2007). Studies on communities of benthic 

macroinvertebrates associated with L. fortunei populations 

evidence “loser” and “winner” species at a local scale 

(Darrigran et al., 1998) in a way similar to what occurs in 

communities associated with D. polymorpha in the northern 

hemisphere (Ward and Ricciardi, 2007); an increase in the 

number of ecologically similar species in the invaded envi-

ronment is noticed. However, total species richness (ecolog-

ically similar and non-similar species) tended to decline in 

large water bodies (regional scale).

The impact of L. fortunei on fish communities

Dense populations of Limnoperna fortunei in the Plata 

basin (Orensanz et al., 2002; Boltovskoy et al., 2006) intro-

duce a new element in the diet of some fish. According to 

García and Montalto (2006), the first record of predation on 

this species is by Micropogonias furnieri (López Armengol 

and Casciotta, 1998). After this initial record, several other 

species of fish were reported to be consumers of the golden 

mussel (Table 1). Likewise, Penchaszadeh et al. (2000) – in 

a study on the diet changes occurring in adult specimens of 

Leporinus obtusidens – corroborated the selective predation 

of this species on adult specimens of the golden mussel. 

Paolucci et al. (2009) experimentally studied the feeding 

selectivity of larvae of Prochilodus lineatus Valenciennes, 

1836 in relation to veligers of L. fortunei. Veligers are pre-

ferred by the early developmental stages of the fish, as the 

slower swimming of veligers makes them easier to capture 

than are planktonic crustaceans. However, as fish larvae 

grow, veligers become too small a prey for their energetic 

needs, and they switch to larger elements, such as clado-

cerans and copepods. This study suggests that this new and 

abundant food resource may have an important impact on 

the survival and growth of P. lineatus.

Generally, species of omnivorous fish studied (Table 1) 

have altered their diets to become malacophagous (García 

and Montalto, 2006). This is evident in the feeding habits of 

both adult (Penchaszadeh et al., 2000) and larval (Paolucci 

et al., 2007) stages of fish development.

This situation suggests that there may be environmental 

changes in two directions: a) one relative to population den-

sities of the prey that was part of the diet of fish prior to the 

golden mussel invasion (García and Montalto, 2006), and b) 

the other related to fish populations that, in a relatively a 

short period of time, came to coexist in the environment with 

a density and availability of over-abundant food that led 

them to modify their feeding habits, using the energy they 

previously spent in finding food, to grow and reproduce 

instead. Currently, the adults of some of the species that eat 

invasive bivalves are considered the most abundant in com-

mercial and sport fishing (García and Montalto, 2006). In the 

Paraná River, colonization by L. fortunei has been associ-

ated with very significant increases in commercial fish 

catches (Boltovskoy et al., 2006). Limnoperna fortunei is 

thus a new and abundant food resource, having an impor-

tant impact on the populations of all predatory species that 
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have been favored by the invasion.

It is noteworthy that the original concept of ecosystem 

engineering does not include trophic interactions (Jones et 

al., 1994, 1997). Even though the trophic relationships 

described cannot be considered ecosystem engineering 

activities, the impact caused by this invasion on the predator 

community is significant and should be emphasized.There is 

a great predator diversity in the region (Table 1) and these 

species have totally or partially changed their regular prey 

preferences and now eat L. fortunei too, so that the density 

of these prey species increases in the absence of predation 

limit forces. Future research should explore whether 

increases in macrobenthic abundance and biomass due to 

L. fortunei ecosystem engineering activities indirectly 

enhance fish abundance and biomass.

The impact of L. fortunei on the water column

Several non-native bivalve species colonized aquatic 

ecosystems worldwide, in some cases with great ecological 

and economic impact (Sousa et al., 2009). Souza et 

al.(2009) stated that engineering activities of bivalves can 

meaningfully alter ecosystem structure and function (e.g., 

changes in sediment chemistry, grain size, and organic 

matter content via bioturbation, increased light penetration 

into the water column due to filter-feeding, changes in 

nearby bed flows).

Most bivalves feed by filtering water through their gills. 

These are structures specialized in retaining particles sus-

pended in water, part of which are drawn into the digestive 

system through the mouth. The amount of nutrient material 

suspended in freshwater is normally very low, generally less 

than 1 mg/liter (Sylvester et al., 2006). Hence, filtering 

organisms are required to process large volumes of water in 

order to fulfill their living and reproductive needs. Conse-

quently, high densities of filtering organisms substantially 

modify their environment. Firstly, filtration draws particles 

from the water column and transfers them to the sediments 

as feces or pseudofeces (Ricciardi et al., 1997) such that 

mussels contribute toward more transparent water and 

bottom environments more enriched in organic matter. 

Clearer water and higher nutrient concentrations favor the 

growth of underwater vegetation. Benthic animals, in par-

ticular detritivorous ones, are favored by the higher content 

of organic matter in the bottom sediment (Karatayev et al., 

2007).

Limnoperna fortunei grows in high densities in the 

invaded areas. It can reach 150,000 specimens.m–2 in nat-

ural environments (Darrigran and Pastorino, 2004), and 

240,000 specimens.m–2 in man-made structures (Darrigran 

and Dreher Mansur, 2009). This, added to their great filter-

ing ability (Sylvester et al., 2005), generates a particularly 

important impact on the water column. As described for 

other species of invading bivalves, they alter the abundance 

and composition of plankton (Cataldo and Boltovskoy, 

2000), modify trophic interactions and food availability of 

benthic and pelagic species, increase the depth of the photic 

zone, and favor macrophytic growth (Boltovskoy et al., 

2009). They also influence the mineralization of nutrients, 

availability of oxygen, and rates of sedimentation and 

nutrient recycling (Karatayev et al., 2007).

Information on the filtering ability of L. fortunei is poor. 

The first contribution assessing its filtering ability was carried 

out under controlled conditions (Sylvester et al., 2005). 

Knowledge of the filtering rate of L. fortunei will be crucial to 

assessing the potential impact on seston. Specimens can 

fulfill their energetic requirements using only phytoplankton 

and seston. According to estimates by Sylvester et al. 

(2005), abundance of phytoplankton in the lower Paraná 

River is not high enough to cover such energy demands, 

which vary by season and specimen size (Pestana et al., 

2009). Therefore, L. fortunei must filter particulate organic 

matter. Sylvester et al. (2006) indicated that due to: 1) the 

high densities shown by golden mussels, 2) the energy 

requirements of the mussel, and 3) the fact that most partic-

ulate matter flows from the upper reaches of the rivers in the 

Plata basin towards the sea, important quantities of particu-

Table 1. Fish species that predate on populations of Limnoperna fortunei in environments of the Plata basin. 1, Boltovskoy and Cataldo, 

1999; 2, Ferriz et al., 2000; 3, García and Protogino, 2005; 4, García and Montalto, 2006; 5, López Armengol and Casciotta, 1998; 6, Montalto 

et al., 1999; 7, Montalto, 2000; 8, Penchaszadeh et al., 2000.

SPECIES DIET REFERENCE

Leporinus obtusidens (Valenciennes, 1847) Omnivorous (seeds, other plants, invertebrates and small fish) 1; 2; 3; 6; 8

Schizodon borellii (Boulenger, 1900) It feeds on different plants 5

Piaractus mesopotamicus (Holmberg, 1887) Omnivorous (crustaceans, insects and plants) 7

Pterodoras granulosus (Valenciennes, 1833) Omnivorous (crustaceans , mollusks, otros invertebrates, fruit and plants) 1; 3; 6

Rhinodoras dorbigny (Kröyer, 1855) Omnivorous 6

Oxydoras kneri (Bleeker, 1862) Omnivorous 4

Pimelodus maculatus (Lacépède, 1803) Omnivorous (small insects and crustaceans, plant and fish remains) 6

Pimelodus albicans (Valenciennes, 1840) Omnivorous 1; 6

Pimelodus argenteus (Perugia, 1891) Omnivorous (small insects, and plant and fish remains) 4; 7

Brochiloricaria chauliodon (Isbrücker, 1978) Iliophagous (substrate algae) 3

Hypostomus laplatae (Eigenmann, 1907) Iliophagous 6

Paraloricaria vetula (Valenciennes, 1836) Detritivorous 1

Megalancystrus parananus (Peters, 1881) Omnivorous 4; 7

Pseudohemiodon laticeps (Reghan, 1904) Omnivorous 6; 7

Cyprinus carpio (Linnaeus, 1758) Iliophagous and plants 4

Potamotrygon brachyura (Güther, 1880) Small mollusks, crustaceans, larvae of aquatic insects and fish in adults 6

Micropogonias furnieri (Desmarest, 1823) Carnivorous 5
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late organic matter are retained in the freshwater bodies by 

filtration activities of L. fortunei. Thus, besides the local 

impacts due to filtration mentioned above, there are long-

range impacts that can only be detected in the medium and 

long terms. These include modifications in the amount of 

particles spilling into the sea from one of the most important 

hydrographic basins in South America.

A study in the Río Tercero water reservoir, Cordoba, 

showed that water transparency, seston and chlorophyll a 

concentrations, and primary production suffered statistically 

significant modifications after the introduction and settle-

ment of L. fortunei in the reservoir (Boltovskoy et al., 2009).

GENERAL REMARKS

Limnoperna fortunei is not only an aggressive invasive 

species, it is also a very effective ecosystem engineer, alter-

ing both ecosystem structure and function. Although first 

recorded in the American continent about twenty years ago, 

there are still too few studies to achieve an appropriate 

description of the bioinvasion pattern, especially considering 

the great adaptive capacity that allows such a vast dis-

persion distribution into different environments (from a tem-

perate to subtropical ones). In a way similar to that detailed 

by Karatayev et al. (2002) for Dreissena polymorpha, the 

impact of L. fortunei invasion varies over time. This species 

responds in a way similar to that of most species involved 

in biological invasion. On one hand, in this kind of process 

there is interaction between the environmental chara-

cteristics (invasibility) and those of the invading species 

(invasiveness). On the other, population growth of an invad-

ing species changes through time (Hicks, 2004). Growth is 

exponential immediately after invasion. During this stage, 

impact on the environment is mainly direct. Later, when 

population density stabilizes at lower values, it acts as an 

ecosystem engineer, and its impact is mainly indirect. 

Predictability of the effects of L. fortunei on the aquatic com-

munity after the initial stages of invasion is lower.

According to Karatayev et al. (2007), in the near future 

L. fortunei may colonize the southern and central parts of 

North America, much farther north than previously predicted 

(Ricciardi, 1998). L. fortunei has wider ecological tolerances 

(e.g. high temperature, low pH, low calcium content, water 

pollution) than D. polymorpha.

This should allow the golden mussel also to invade 

freshwater environments unsuitable for zebra mussels 

(Karatayev et al., 2007). The same reasoning can be 

applied to Europe. Considerable commercial trade exists 

between South America and southern Europe (e.g. Spain), 

especially in the past two decades. These facts suggest that 

bivalve introductions between these two areas are likely to 

increase in the future. Dreissena polymorpha, for instance, 

may be transported and released into South American 

acquatic systems and Limnoperna fortunei may be trans-

ported and released into south European freshwater 

systems. Therefore, understanding the ecosystem engineer-

ing roles of L. fortunei is critical for its management and/or 

control. Such an understanding could serve to alert 

governments and private institutions about a potential envi-

ronmental and economical regional bionvasion problem, 

consequently allowing them to generate measures relating 

to management, control, and awareness of the magnitude of 

the problem. Accurate knowledge on the pattern of activity 

of ecosystem engineers is essential for designing preventive 

management strategies to handle bioinvasion processes.
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