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Study on Optimization of Sea Ice Concentration with Adjoint
Method
Xiying Liu†* and Lujun Zhang§

ABSTRACT

Liu, X. and Zhang, L., 2018. Study on optimization of sea ice concentration with adjoint method. In: Wang, D. and
Guido-Aldana, P.A. (eds.), Select Proceedings from the 3rd International Conference on Water Resource and
Environment (WRE2017). Journal of Coastal Research, Special Issue No. 84, pp. 44-50. Coconut Creek (Florida),
ISSN 0749-0208.

Obtaining initial sea ice concentration (SIC) values with high accuracy that are consistent with other models have
been a hot topic in both sea ice prediction and sea ice modeling studies. Here, an ocean-sea ice coupled numerical
model and its adjoint code have been utilized to carry out numerical experiments to optimize the initial SIC values. In
the experiments, the cost function was defined as the difference between the SIC values from the reanalysis dataset
and the modeled results. The gradient of cost function, relative to SIC and other model variables, was computed by
the adjoint model, and a linear search algorithm was employed to optimize the SIC values by minimizing the cost
function. The influences of the weight coefficients of the cost function, the extent of the geographical region, and the
seawater temperature and sea ice thickness initial values on the optimization results have been analyzed. The weight
coefficients of the cost function had little effect on the SIC distribution pattern but substantial influence on the SIC
values. The optimized SIC in the Greenland Sea, Okhotsk Sea, and the Arctic Ocean, with a constant weight
coefficient, is better than that with variable weight coefficients. The errors in the initial model fields, other than SIC,
may deteriorate the overall result, implying that optimizing multiple model fields simultaneously may improve the
optimization effect. Decreasing the size of the geographical region for optimization does not improve the SIC
optimization results substantially. Compared to the results from a global cost function, the Barents Sea SIC values
from a northern hemispheric cost function are poorly optimized.

ADDITIONAL INDEX WORDS: Numerical prediction, initial values, cost function, coupled model.

INTRODUCTION
Global climate and environmental change has been a hot topic

in current earth science research, encompassing the complex
interactions between the different earth spheres. To obtain an
accurate understanding of the overall behavior of such a
complicated system, it is necessary to have a solid grasp on the
key mechanisms of each individual sphere. As an important
component of the cryosphere, sea ice has been receiving
increasing attention in the scientific community. Sea ice has a
much higher albedo than other earth surfaces, such as the
surrounding ocean. The high albedo of the sea ice serves a role
in maintaining cooler polar temperatures by reflecting much of
the received sunlight away from the surface. The sea ice cover
hinders the heat and mass exchanges between the atmosphere
and ocean. When sea ice forms, much of the salt in the seawater
is squeezed out of the frozen crystalline matrix of the sea ice,
with the salty, dense water beneath the sea ice cover potentially
leading to a convection instability. These effects contribute to
the evolution of the climate system. On a seasonal scale,
seawater freezes to form sea ice in the winter, releasing heat into

the seawater, and the sea ice then melts in the summer,
absorbing heat from the seawater. The seasonal seawater
temperature extremes are reduced by the effect of the sea ice
acting as an insulating barrier between the air and seawater. At
longer time scales, the sea ice not only affects the local climate
through ocean-atmosphere interactions, but it also effects
broader regions through internal atmospheric and oceanic
processes. Since sea ice has such an important role in ocean-
atmosphere interactions, accurately depicting the evolution of
sea ice has become important research direction in the numerical
simulation of the climate system (Liu et al., 2008). In addition,
since sea ice has impacts on navigational activities, it is
important to accurately predict sea ice distribution and thickness
changes. The performance of sea ice numerical simulations and
forecasting is related to the sea ice model, ocean model,
atmospheric forcing, and initial model values. Among these, the
quality of the initial values of the sea ice model is an important
influencing factor.
Initial value processing techniques have been widely used in

atmospheric and oceanic numerical simulation and prediction
studies (Pohlmann et al., 2009; Smith et al., 2007). Studies have
shown that these slower surface processes may provide an
important contribution that is needed in models to improve
climate predictability (Hurrell et al., 2009; Liu et al., 2005;
Shepherd et al., 2011), thus requiring better simulation and
prediction methods to capture these slow changes. High-quality
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initial sea ice values are necessary to improve sea ice model
simulations and predictions. This is primarily achieved through
the assimilation of sea ice observations. There have been many
works on sea ice data assimilation, but most are confined to
either the statistical optimization method (Meier, Maslanik, and
Fowler, 2000; Zhang et al., 2003) or the relaxation technique
(Tietsche et al., 2013). Toyoda et al. (2016) assimilated sea ice
concentrations into a global ocean-sea ice model with a three-
dimensional variational method. Dynamic optimization using
the model equations as a constraint (e.g., the adjoint method)
possesses several unique advantages, including a clear physical
meaning and greater consistency among the model variables, but
this kind of approach on sea ice is still rare at present.
The adjoint method is a kind of dynamic analysis method

based on the dynamic prediction problem (forward problem) to
obtain the inverse deduction (inverse problem). It is a powerful
tool for studying the sensitivity of the outputs to the inputs, and
it has been used in many studies, such as optimization problems,
stability analyses, and parameter estimations (Errico, 1997).
Over the past few decades, the adjoint method has been applied
to many fields, including atmospheric science, computational
fluid dynamics, ice sheet modeling, and engineering design
optimization (Giannakoglou and Papadimitriou, 2008; Giles and
Pierce, 2000; Goldberg and Heimbach, 2013; Heimbach and
Bugnion, 2009; Homescu and Navon, 2003; Ngodock et al.,
2017). Adjoint approaches have been proven to outperform
other relevant methods, such as direct sensitivity analyses, finite
differences, and the complex variable approach (Giannakoglou
and Papadimitriou, 2008). For example, the adjoint method has
been employed to determine the sensitivity of the typhoon
intensity to the initial model value, and the terrain in the whole
computation zone can be obtained in one numerical experiment
without the need to design different tests for different regions
within the zone (Liu, 2014).
For climate studies, the most important sea ice parameters are

sea ice concentration (SIC) and sea ice thickness. While the SIC
observational record is dense in both space and time, ice
thickness observations are sparse. Therefore, the assimilation of
sea ice thickness data cannot avoid the problem of large
uncertainties associated with the true ice thickness. Initial
conditions derived from the assimilation result inherit this
uncertainty, which in turn severely limits the reliability of sea
ice predictions (Tietsche et al., 2013). Here a coupled ocean-sea
ice model, as well as its adjoint model, will be used to study
Arctic SIC optimization, and then analyze the effects of the cost
function and the initial values of the key seawater and sea ice
parameters on SIC optimization. Although the adjoint method
has been widely used for sensitivity analysis and data
assimilation studies in the atmospheric and oceanic sciences, its
use in sea ice simulations and research is rare.

METHODS
An ocean-sea ice coupled model and its adjoint code have

been utilized to carry out numerical experiments to optimize the
initial SIC values.

Numerical Model
The Massachusetts Institute of Technology general circulation

model (MITgcm) (Marshall et al., 1997) is used to carry out this

research. MITgcm is a numerical model that simulates the
atmosphere and oceans. Compared to other numerical models, it
merits some outstanding features, including: the atmospheric
oceanic components are constructed based on the same dynamic
framework, such that it can be used to study both atmospheric
and oceanic phenomena; the atmospheric and oceanic
components can be coupled to study the ocean-atmosphere
interaction problem; the model can adopt a non-static
equilibrium form for the momentum equation to study both
large-scale and small-scale processes; the dynamic framework
adopts a curvilinear coordinate system, and an alternative cubed
sphere grid can be used to solve the "pole problem" effectively;
the model uses the finite volume method to represent the terrain,
which can depict the complex terrain more accurately; and it can
be used to study sensitivity and optimization problems since the
tangent linear and adjoint codes can be readily obtained from the
model (Heimbach, Hill, and Giering, 2005). For more
information on the MITgcm, see the latest online documentation
at the MITgcm website (http://mitgcm.org/public/r2_manual/lat-
est/online_documents/manual.html).
Two sea ice configurations are provided in the MITgcm

(Checkpoint 621). One is a thermodynamic sea ice configuration
(the Semtner three-layer thermodynamics (Semtner, 1976)), and
the other is an alternative that includes both the thermodynamic
(the Semtner zero-layer scheme (Semtner, 1976)) and dynamic
processes. For the dynamic processes, either the elastic-viscous-
plastic (EVP) rheology (Hunke and Dukowicz, 1997) or the
viscous-plastic rheology (Hibler, 1979) can be used.

Dataset
The atmospheric forcing fields and SIC were taken from the

reanalysis dataset ERA-Interim, which was provided by the
European Center for Medium-range Weather Forecasts
(ECMWF) (Simmons et al., 2007). The atmospheric forcing
fields included wind (speed and direction) at 10 m, air
temperature at 2 m, specific humidity at 2 m (converted from the
dew point temperature at 2 m), surface downward short wave
radiation flux, and surface downward long wave radiation flux.
Each of these fields was calculated four times a day.

Experiment Design
The Semtner zero-layer scheme and EVP rheology were used

in each of the experiments. The initial SIC values of the
experiments were the simulation outputs from 0:00 UTC on
March 1, 2012, taken from a simulation the evolution of the
ocean and sea ice under atmospheric forcing from 1989 to 2012
(Liu and Liu, 2012). The parameters used in the forward-
integration model were identical to those in Liu and Liu (2012),
employing a cubed sphere, a horizontal grid spacing of 150 km,
and 30 layers in the vertical. The global ocean and sea ice were
simulated with the forward-integration model. The automatic
difference transformation of algorithms in Fortran (TAF) tool
(Giering and Kaminski, 2003; Heimbach, Hill, and Giering,
2005) was used to generate the adjoint code of the forward-
integration model.
To determine the SIC constraint imposed by the ERA-Interim

dataset, the cost function J is defined as:
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J = wi[ci - Ii (c
o)]2

i=1

N

å
(1)

where, ic is the simulated daily mean SIC of grid point i , oc
is the daily mean SIC of ERA-Interim dataset,

iI is an bilinear
interpolation operator that transforms the field from the ERA-
Interim dataset grids to the model grid, iw is the weight
coefficient, and N is the total model grid points covered by sea
ice. The definition of the cost function here is different from that
in data assimilation, since the emphasis is different in the two
kinds of research.
A linear search algorithm was employed to minimize the cost

function by optimizing the SIC values. The linear search
algorithm is based on a quasi-Newton variable storage method
that was implemented by Gilbert and Lemaréchal (1989). The
cost function gradients of the model variables were calculated
and the initial SIC values were adjusted with the linear search
algorithm using the adjoint code. The process was iterated until
the descent direction of the cost function changed. The updated
control was then used as the input for these simulations,
employing the same descent direction, but with different step
sizes.
The weight coefficient values will influence the cost function

and thus influence the results of the SIC optimization. To study
the influence of the weight coefficients on the optimization, two
kinds of weights were employed to carry out the numerical
simulations. It should be noted that the initial ocean and sea ice
values will also influence the SIC optimization results. Thus,
numerical experiments on the influences of these initial values
with seawater temperature and uniform sea ice thickness were
performed. In addition, to study the effects of the spatial extent
of the cost function calculations on the SIC optimization results,
one numerical SIC experiment was also performed that included
the southern hemisphere and was not optimized. The numerical
experiments performed in this study are listed in Table 1.

Table 1. Description of the numerical experiments.

Name Description
EXP_WC1 21 /i iw d= ， id = 0.5.

EXP_WC2 21 /i iw d= ，
id = o

i ， o
i is the

standard deviation of the SIC daily mean in
March 2012.

EXP_TEM Identical to EXP_WC2, with the exception
that the climate seawater temperature is
used as the initial value of the seawater
temperature.

EXP_ITH Identical to EXP_WC2, with the exception
that the initial sea ice thickness value is
assumed to be 2 m.

EXP_NOR Identical to EXP_WC2, with the exception
that 0iw = in the southern hemisphere.

RESULTS
The variations in the cost function were different for each of

the experiments, but they all decreased gradually. After fourteen
iterations, the cost function change in all experiments was <
0.1%. However, the speed of the cost function decrease in
EXP_WC1 was faster than in the other experiments (figures not
shown). Thus, the faster convergence speed of EXP_WC1
highlighted its better performance. In a later analysis of the
numerical experiment results, the output data from the fifteenth
iteration of each experiment would be used. From the ERA-
Interim reanalysis dataset (Figure 1b), the impact of the North
Atlantic Warm Current clearly influences the ice-free conditions
in both the Greenland Sea (south of Svalbard) and Norway Sea,
with the southern Barents Sea also being ice-free. The sea ice
extent in the Labrador Sea along the coast of North America
extends southward to Newfoundland, with sea ice cover across
both the Bering Sea and Okhotsk Sea. The initial SIC values of
the numerical experiments (Figure 1a) come from the numerical
simulation results for 0:00 UTC on March 1, 2012, with no
optimization. Compared to the reanalysis dataset results, there is
more sea ice in the Greenland Sea, Barents Sea, Labrador Sea,
Okhotsk Sea, and in the northern Davies Strait, but less sea ice
in the Bering Sea for the initial SIC results (Figure 1).

Figure 1. SIC distribution at the start of the model integration. (a) Initial
SIC values; (b) SIC results from the ERA-Interim reanalysis dataset. The
numbers along the coordinate axes denote the position of model grids.
The SIC distributions are represented by color-filled grid cells, with the
legend on the right side of each panel providing the SIC values.

(a)

(b)
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Here the adjoint model is used to optimize the initial SIC
values. The SIC values from the reanalysis dataset and
numerical model are employed together to adjust the initial SIC
values to reach the state where its difference from the reanalysis
dataset is minimized (e.g., the cost function was minimized).
Consequently, the adjusted SIC values are influenced by both
the reanalysis data and the numerical model performance. For
each of the five experiments, the adjusted SIC distribution
(Figure 2) is improved compared to its counterpart without
optimization (Figure 1). There are, however, substantial
differences between the results of different numerical
experiments (Figures 2a–e). The weight coefficients in the cost
function have little effect on the SIC distribution pattern but
substantial influence on the SIC values (Figures 2a and 2b).
Comparing the simulation results between EXP_WC1 and
EXP_WC2, the optimized SIC extent in the Greenland Sea,
Okhotsk Sea, and the Arctic Ocean from EXP_WC1 is in better
agreement with the reanalysis results. Generally speaking, the
experiment results that employ a constant weight coefficient
(EXP_WC1) are better than those that employ variable weight
coefficients (EXP_WC2) (compare Figures 2a and 2b to Figure
1b).

Figure 2. Optimized SIC from the different experiments: (a) EXP_WC1;
(b) EXP_WC2; (c) EXP_TEM; (d) EXP_ITH; and (e) EXP_NOR. The
numbers along the coordinate axes denote position of model grids. The
SIC distributions are represented by color-filled grid cells, with the
legend on the right side of each panel providing the SIC values.

The results of the initial seawater temperature (EXP_TEM)
and sea ice thickness (EXP_ITH) numerical experiments
(Figures 2c and 2d) highlight that errors in the initial values of
the model variables, other than SIC, have significant effects on

(a)

(b)

(c)

(d)

(e)
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the SIC optimization. The EXP_TEM and EXP_ITH results
reveal that the optimized SIC values in the Barents Sea and
Okhotsk Sea are worse than the optimized EXP_WC1 and
EXP_WC2 SIC values. This implies that the SIC optimization is
improved when more initial values of the model variables are
optimized simultaneously.
The EXP_NOR experiment was carried out to investigate the

influence of changing the spatial area of optimization on the SIC
optimization. Compared to the results from the experiment with
a global sea ice cover adjustment (EXP_WC2), reducing the
spatial area of optimization does not improve the SIC
optimization results, and the SIC results in the Barents Sea
worsen (Figures 2b–e).
The advantage of optimization with the adjoint method is that

when a particular field is optimized, the other quantities will be
adjusted at the same time to ensure that all the model fields are
consistent under the constraint of the model equations. After the
initial SIC values have been optimized, the sea ice in the
Greenland Sea, Barents Sea, Davies Strait, northern Labrador
Sea, and northern Okhotsk Sea are all reduced and yield better
agreement with the reanalysis results (Compare Figure 2 with
Figure 1). The reduction in sea ice cover across those regions
leads to increased losses in both the sensible and latent heat
fluxes from the sea surface, which favors the decrease in sea
surface temperature (See Figure 3; The results from EXP_WC1
is used here as an illustration, although the results from the other
experiments are similar.), which goes against the reduction of
sea ice there. However, the surface ocean currents also change,
with the East Greenland Current weakening and the North
Atlantic Ocean Warm Current strengthening, both of which
favor the reduction in sea ice cover across the Greenland Sea
and Barents Sea.

Figure 3. Differences of sea surface temperature (color shaded), SIC
(contour), and sea surface current (vector) between EXP_WC1 and the
initial values. The SIC contour levels are –0.7, –0.5, –0.3, and –0.1,
respectively. The numbers along the coordinate axes denote the position
of the model grids. The maximum length of arrow denotes 0.5 m/s, and
the legend for sea surface temperature is on the right side.

None of the numerical experiments produce sea ice in the
southern Bering Sea due to the simulated sea surface
temperature being higher than the real case there. Since the sea
surface temperature is well above the freezing point of seawater
in the model, any increased sea ice from the adjustment process
will still be quickly melted away by the model. Meanwhile, the
seawater temperature will decrease due to the sea ice melt in the
model. This sea ice bias in the Bering Sea is the result of a heat
flux imbalance between the ocean and atmosphere, implying
that there are errors in the atmospheric forcing and/or ocean
processes. These errors lead to a warm bias of the sea surface
temperature in this region, such that the thermodynamic
condition of sea ice formation cannot be met. During the
optimization process, the Bering Sea SIC values are adjusted
(made to increase) in each iteration, but the increased sea ice
will still be melted away immediately. This shows that the
performance of the numerical model has substantial influence on
the optimization results. If the performance of a numerical
model is bad, it will then be difficult to obtain good optimization
results.

DISCUSSION
Adjoint models are widely used in geophysical fluid modeling,

but few models are freely accessible to the scientific community.
The numerical code of the MITgcm is designed to enable
computer generation of its adjoint model using the automatic
differentiation TAF tool, which is freely accessible and has been
applied to many studies. For example, the sensitivity analysis of
ocean circulation to topography (Losch and Heimbach, 2007),
the evaluation of carbon sequestration efficiency (Hill et al.,
2004), the parameter and state estimation in ice sheet modeling
(Goldberg and Heimbach, 2013), and sensitivity studies of loop
current and eddy shedding in the Gulf of Mexico
(Gopalakrishnan, Cornuelle, and Hoteit, 2013) have all
employed the MITgcm adjoint model. These works have thus
verified the feasibility and robustness of the adjoint code, which
prompted the choice of the MITgcm adjoint model for this SIC
study.
Only the daily mean SIC from the reanalysis dataset was used

to carry out the experiments. Further research on SIC
optimization with the observed SIC values over longer periods
needs to be undertaken. In addition, since sea ice thickness is
also an important factor in sea ice modeling, especially in
climate research, the sparse sea ice thickness datasets should be
more thoroughly analyzed. Future research should consider
employing the adjoint method in sea ice thickness optimization
studies.
It should be noted that the TAF, which is employed in the

adjoint code, is a commercial software. The MITgcm also
enabled computer generation of its adjoint model using OpenAD
(Utke et al., 2008), which is a flexible, modular, open source
tool. However, the configuration has not been tested with it yet.

CONCLUSIONS
Five numerical experiments were performed with the

MITgcm adjoint model to study SIC optimization. The
influences of the cost function weight coefficients, the seawater
and sea ice initial values, and the extent of the geographical
region were evaluated to determine the optimization of the
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initial SIC values. The cost function weight coefficients have
little effect on the SIC distribution pattern but a substantial
influence on the SIC values. The optimized SIC in the
Greenland Sea, Okhotsk Sea, and the Arctic Ocean with a
constant weight coefficient is better than that with variable
weight coefficients. The impacts of the initial seawater and sea
ice values on the optimization results of the initial SIC values
are significant. When seawater temperature and sea ice thickness
values with larger bias are used as the initial values, the
optimized SIC values in the Barents Sea and Okhotsk Sea get
worse. Decreasing the extent of the geographical region for
optimization does not improve the results of the SIC
optimization substantially. Compared to the result from the
global optimization scheme, the SIC results in the Barents Sea
from the northern hemispheric scheme worsen.
It can be deduced that a better result would be achieved if

more initial seawater and sea ice values are optimized
simultaneously. The negative bias of sea ice in the Bering Sea in
the numerical experiments would be reduced if the sea surface
temperature is also optimized.
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