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Original article

Predicting landscape-scale habitat distribution for ruffed grouse

Bonasa umbellus using presence-only data

Erik J. Blomberg, Brian C. Tefft, Erik G. Endrulat & Scott R. McWilliams

Ruffed grouse Bonasa umbellus populations in North America have declined as forests have matured and the extent

of early successional forest habitat required by the species has diminished. When wildlife species decline because of

habitat loss, determining where to focus habitat management efforts is difficult because both the wildlife population

and the required habitat(s) are usually limited in distribution. We adopted a relatively new ecological modeling

method, partitioned Mahalanobis D2, which allowed us to predict the distribution of potential ruffed grouse habitat

across a landscape of management concern where high quality habitat was uncommon. We used presence data

derived from radio-telemetry locations, and GIS habitat data from publicly available sources to create competing

partitioned Mahalanobis D2 models. The competing models identified important habitat variables and predicted

ruffed grouse habitat distribution at 1-ha and 25-ha scales in southwestern Rhode Island, USA. The 1- and 25-ha

models produced comparable overall classification accuracy (83.1% and 81.4%, respectively) but differed substan-

tially in the area of predicted habitat (4,475.5 ha and 10,133.8 ha, respectively). We selected the more conservative

1-ha model as the 'best' model, and expanded it to a larger landscape extent. Once expanded, the model predicted

11,463 ha (15.5% of total land area) of potential ruffed grouse habitat for a 735-km2 landscape in southwestern

Rhode Island. This model identified those areas with varying proximities to the following features as likely to con-

tain ruffed grouse habitat: early successional forests, river and stream corridors, mixed conifer forests, conifer

forests, shrub wetlands and deciduous forests. Early successional forests were the most consistent component of

habitat used by grouse, despite the fact that this habitat type was uncommon in our study area (<1% of total land

area). Our model can be used to identify areas of existing ruffed grouse habitat for management focus.
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The ruffed grouse Bonasa umbellus (hereafter
grouse) is a popular North American game bird
whose population has declined >50% range-wide
over the last 40 years (Butcher &Niven 2007), most

notably in the eastern USA (Rusch et al. 2000,
Dessecker&McAuley 2001).Grouse depend onde-
ciduous forests in the first stages of woody suc-
cession following disturbance (Bump et al. 1947,
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Rusch et al. 2000, Dessecker & McAuley 2001).
Current land management practices in the north-
easternUSAminimize or eliminate several forms of
natural disturbance, such as wildfire and American
beaver Castor canadensis, which were historically
important for maintaining early successional habi-
tat (Askins 2000, Lorimer & White 2003). Most
current anthropogenic disturbances (e.g. housing
development) do not typically allow forests to
regenerate, and thus early successional habitat is
becoming increasingly rare in the region (Brooks
2003). The generally accepted hypothesis for the
observed grouse population decline is a concomi-
tant decline in the availability of early successional
forests (Dessecker &McAuley 2001). This hypoth-
esis is supported by the observation that numerous
other species that require similar early successional
habitat also are declining in the region. (Askins
2000, Litvaitis 2001, Fuller & DeStefano 2003).
To effectively assess conservation options, biol-

ogists require information on the distribution of
species’ habitat at scales relevant to management
goals (Scott et al. 2002). However, when wildlife
species decline because of habitat loss, determining
where to focus management efforts may be difficult
because the species and its habitat may be limited in
distribution.Grouseareknowntousemultipleearly
successional age classes (Bump et al. 1947, Gullion
1984b, Rusch et al. 2000), where each age class pro-
vides different structure required for various life
history stages (e.g. open understories in pole-stage
stands for nesting vs dense understories in sapling-
stage stands for brood rearing; Gullion 1984a,
Rusch et al. 2000). When multiple seral stages are
unavailable, other habitats may serve as surrogates
to provide the structural diversity required by
grouse. For example, grouse in Rhode Island com-
monly select forests with pitch pinePinus rigida and
scrub oak Quercus ilicifolia, presumably because
they provide high woody stem density, which is im-
portant year-round for cover (Endrulat et al. 2005).
InPennsylvania,however,thesehabitatswereavoid-
ed in an area where a greater amount of sapling-
stage forest was available (Scott et al. 1998). Thus,
surrogate habitats and their orientation on the land-
scape are likely important determinants of grouse
distribution in areas where high quality early suc-
cessional habitat is rare.
Although methods exist to assess grouse habitat

qualitybasedon site-level habitat surveys (e.g.Cade
&Sousa1985), theseareonlyapplicableat relatively
small scales and for optimum habitat. In contrast,

we required information on the distribution of po-
tential grouse habitat for a landscape where high
quality habitat was uncommon and multiple sur-
rogatehabitatswere available andknown tobeused
by grouse. Multivariate statistical models that use
geographic information systems (GIS) data are ef-
fective tools to estimate the probability of habitat
occurrence (Guisan & Zimmermann 2000, Scott et
al. 2002, Beissinger et al. 2006). So-called species
distribution models (SDM) vary substantially in
methodology (for reviews, see Guisan & Zimmer-
man 2000, Scott et al. 2002,Guisan&Thuiller 2005,
Beissinger etal.2006,Elithetal.2006),butall relyon
the concept of ecological niche (Guisan & Zimmer-
mann 2000, Guisan & Thuiller 2005). An implicit
assumption in all SDMs is that the habitat charac-
teristics used to construct themodel can adequately
characterize this environmental niche (Browning
et al. 2005). A second related assumption is that the
species beingmodeled is in pseudo-equilibriumwith
its environment, an assumption that is necessary to
projectmodelsbuiltusingspatially-andtemporally-
limited data to larger scales (Guisan & Thuiller
2005). Many SDMs require information regarding
species presence and absence, but there are many
situations where defining true absences can be dif-
ficult, especially when dealing with small popu-
lations. Reasons for failure to detect species pre-
sence include inconspicuous individuals, inadequate
survey effort and/ordesign, suitablebutunoccupied
habitat, and truly unsuitable habitat (Hirzel et al.
2001, 2002, Rotenberry et al. 2002, Grahm et al.
2004).These concernsmaybe especially relevant for
grouse,which canbedifficult to reliably detect using
standard survey protocols (Zimmerman & Gutiér-
rez 2007).

Ourmainobjectivewas topredict thedistribution
of potential grouse habitat in a landscape of man-
agement concern in order to inform management
authorities and support future research. We adopt-
ed a relatively new ecological modeling technique,
partitioned Mahalanobis D2 (hereafter partitioned
D2)thathasbeenusedtopredicthabitatdistribution
for rare wildlife species given only data on species
presence (Rotenberry et al. 2002, Browning et al.
2005, Rotenberry et al. 2006, Watrous et al. 2006).
PartitionedD2 is amodificationof theMahalanobis
distance method, which has been widely applied
(Clark et al. 1993, Farber&Kadmon 2003, Tsoar et
al. 2007, Alloche et al. 2008). Partitioned D2 differs
from the Mahalanobis method in that it partitions
the full Mahalanobis D2 into separate components
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that represent independent environmental relation-
ships, themost consistent ofwhichdefine the species
minimum habitat requirements (Rotenberry et al.
2006). The procedure involves conducting a prin-
ciple components analysis (PCA), which identifies
habitat relationships basedon themultivariatemean
and variance of environmental variables measured
at locationswhere thespecies ispresent(Browninget
al. 2005, Rotenberry et al. 2006). Unlike traditional
interpretationofPCA,partitionedD2focusesonthe
lowest principle components, which describe the
most consistent patterns in the species’ habitat use.
Environmental variables that load highly on the
lowest components are those variables that con-
sistentlyoccurwhere the species is found,and in that
sense represent the species’ minimum habitat re-
quirements (Browning et al. 2005, Rotenberry et al.
2006). Thus, locations with unknown occupancy
that contain theminimum habitat requirements are
assumed to have a high probability of providing
habitat for the species (Rotenberry et al. 2006).
Partitioned D2 shares the assumptions inherent to
all distributionmodels as described above, and also
assumes that the species habitat can be described in
terms of multivariate means and variance (Brown-
ingetal. 2005,Rotenberryetal. 2006).Additionally,
partitioned D2 assumes that the distribution of
minimum habitat requirements limits the species’
distribution (Rotenberry et al. 2006). We used par-
titioned D2 because it allowed us to predict grouse
habitat distribution in southwestern Rhode Island
using presence-only data in a situation where re-
liable absence data were unavailable.

Methods

Study Area

Our study was conducted in the Arcadia Manage-
ment Area (hereafter Arcadia) and surrounding
private lands inWashingtonCounty,Rhode Island,
USA (41x32'N, 71x43'W) (Fig. 1). Arcadia is man-
aged by the Rhode Island Department of Environ-
mental Management as a multiple use recreation
area. We selected this site so we could build on pre-
vious grouse research in the area (Endrulat et al.
2005) thatwasconductedaspartof theAppalachian
Cooperative Grouse Research Project (ACGRP;
Norman et al. 2004). Additionally, the site is con-
sidered an area of management concern because
of recently observed declines in grouse populations
(Fig. 2; Tefft 1999, 2007). We used raster GIS data,

which is most easily analyzed in square dimensions,
to defineour studyarea as a16,900 ha rectangle that
fullyencompassedallportionsofArcadia(seeFig.1).
Arcadia covered 6,604 ha of this area, and the re-
mainder consisted of private lands (10,296 ha).

The dominant forest type in Rhode Island, his-
torically, was oak Quercus spp. and chestnut Cas-
tanea dentata forest (Butler &Wharton 2002). Like
most of southern New England, Rhode Island was
almost completely cleared of forests for agriculture
and fuel wood by the dawn of the American indus-
trial revolution (Butler & Wharton 2002). Around
the turn of the 20th century, chestnut blight elim-
inatedtheremainingmaturechestnuts(Russell1987),
which changed the dominant forest composition
fromoak-chestnut tooak-hickoryCarya spp. (Butler
& Wharton 2002). Forest regeneration in aban-
doned agricultural areas resulted in a dramatic in-
crease in early successional habitat during the early
to mid-20th century (Lorimer 2001, Brooks 2003),
butby theendof thecentury,mature second-growth
forests covered most of the undeveloped land in the
state (Butler & Wharton 2002), and early success-
ional habitat was less common than pre-settlement
levels (Brooks 2003). Our study area is representa-
tive of southernNewEngland forests in thatwhen it
was last surveyed (1995), the study area wasy78%
forested, and 55% of the total land cover was
second-growthdeciduous forest (Rhode IslandGeo-
graphic InformationSystems (RIGIS): http://www.
edc.uri.edu/rigis) dominated by mature red oak Q.
rubra, white oakQ. bicolor, beech Fagus grandifolia
and hickory.

Input data used to construct partitioned

D
2
models

Grouse location data
Past applications of partitioned D2 have typically
relied on presence data derived from point counts
(Rotenberry et al. 2002, Rotenberry et al. 2006) or
discrete landscape features used by one or more
individuals (Browning et al. 2005, Watrous et al.
2006). Standard roadside surveys conducted during
the breeding season when male grouse display and
are most conspicuous routinely fail to detect indi-
viduals (Zimmerman&Gutiérrez 2007), and do not
account for breeding habitat used by females. We
therefore used radio-telemetry to define areas with
known grouse presence in our study area.

We captured grouse inArcadia during 1999-2001
using cloverleaf interception traps (Gullion 1965),
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and fitted them with necklace-style radio-collars as
described inEndrulat et al. (2005).Unless otherwise
noted, values are presented as means¡SE. Point
locations of radio-collared grouse were collected
diurnally by taking at least three bearings within a
30-min period from stations with known UTM co-
ordinates. To ensure independent observations, no
more than one location was collected per day, with
an average of 5.6 (¡5.7) days between serial lo-
cations. Methods followed those of the ACGRP
including removal of locations with >800 m Geo-
metricMeanDistance from telemetry stations prior
to final analysis (see Whitaker 2003 for complete
ACGRP telemetry criteria). For our study, we used
1,210 radio-locations from28 radio-collared grouse
(on average 44¡6 locations per bird) that included
females and males (N=7 and 21, respectively) and

Legend

Study area

Management areas

Expanded area

Rhode Island0 9 184.5
Kilometers

Figure 1. Original study area (dashed box)
for which we created a partitioned Maha-
lanobis D2 model of ruffed grouse habitat
based on data from the Arcadia Manage-
ment Area (Management area contained
withindashedbox),westernRhodeIsland,
USA, and the expanded area (dark gray
box) where we extrapolated model predic-
tions beyond the original study area. The
white polygons represent wildlife manage-
ment areas controlled by theRhode Island
Department of Environmental Manage-
ment.

Figure2.Recentlyobservedtrends inruffedgrouseabundance,as
indexed by spring roadside drumming surveys conducted during
1993-2007 (Tefft 2007), and fall live trapping success conducted
during 1999-2001 (E. Endrulat, unpubl. data) and 2005-2006 (E.
Blomberg, unpubl. data) in Rhode Island, USA.
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adult and juvenile age classes (N=17 and 11, re-
spectively). Telemetry locations included a mini-
mum of 47 points (average=100.8¡36.5; y4% of
total data set) per month and a minimum of 206
points (average=302.5¡104.1;y17%of total data
set) per season (i.e. spring, summer, fall andwinter).
Trapping and handling protocol were approved by
theUniversityofRhodeIslandInstitutionalAnimal
Care and Use Committee (IAUCUC #: AN00-09-
009).

Defining grouse presence
In our telemetry data set, radio-relocations and
homerangeestimates for individualbirdshadahigh
degree of overlap. Additionally, sampling was not
uniform throughout the study area, and the density
of marked individuals did not necessarily reflect ac-
tual grouse density. Because partitionedD2predicts
potential habitat based on variation in environ-
mental variables at locations where a species is pre-
sent, we could not identify habitat use on a per-
individual basis because habitat values at any given
location (in our case, delineated by raster GIS cells)
could be input into the model multiple times (once
for each grouse that used the location), thus over-
representing the importance of that location.
We pooled our radio-telemetry locations among

individuals and seasons to identify presence loca-
tions thatwereusedbyoneormoregrouse.Since the
radio-telemetry data included grouse of both gen-
ders and different age classes, and the data were
collected evenly across all seasons (see previous sec-
tion), we assumed that the presence locations are a
representative sample of all regional habitat types
used by grouse annually. We created grids that
covered the entire study area, and classified each cell
as either occupied, or as having unknown occu-
pancy. We repeated this process for two different
grid resolutions with 1-ha and 25-ha cells. Cells in
the 1-ha resolution grid, which represented a site-
level scale (Johnson 1980), were considered occu-
piedif theycontainedat leastoneradio-location.We
chose 1 ha for site-level scale because it approx-
imates movement rates of non-dispersing grouse
(109¡7 m/hour; Fearer 1999). The second grid rep-
resented a home range scale (Johnson 1980) with
25-haresolution,whichapproximates themid-point
of published grouse home range sizes (varies from
7.3-49.1 ha,dependingonageandgender;Whitaker
et al. 2007). Here, we used 50% kernel home range
estimates (Endrulat et al. 2005) to identify cells as
occupied or unknown based onwhether at least one

estimatedhomerangeoverlappedagivencell.Based
on these criteria, at the 1-ha scale, we used 468 1-ha
grid cells as discrete locations with known grouse
presence. At the 25-ha scale, we used 70 25-ha grid
cells as presence locations. The total area identified
as used by grouse at the 1- and 25-ha scales was
468 ha and 1,750 ha, respectively.

GIS habitat variables
We identified forest habitat types, forested wet-
lands, stream corridors and elevation from publicly
available GIS data (RIGIS: http://www.edc.uri.
edu/rigis; Table 1).We converted categorical cover-
ages intocontinuousvariablesofproximity to (1 ha)
and percent coverage of (25 ha) that reflected habi-
tat configuration. At the 1-ha scale, habitat vari-
ables were ameasure of the distance from the center
of a focal grid cell to the center of the nearest cell of
eachhabitat feature (seeTable1).At the25-ha scale,
we assumed that grouse select an area based on the
total availability of resources within a home range,
so habitat variables were a measure of composition
within each grid cell (i.e. percent cover of habitat
types; seeTable1).At this scalewealsoassumedthat

Table 1. Mean and standard error for habitat characteristics
measured at two scales of ruffed grouse presence in western
Rhode Island, USA. Variables at 1-ha scale are the distance
(metersr100) from the center of each cell to the center of the
nearest neighboring cell of each habitat type. Elevation is given
as relative to the average elevation in the study area. Variables
at the 25-ha scale are the percent coverage of each habitat type
within each cell.

Scale Variable

Presence

locations
-----------------------

Mean SE

1-ha Elevation -21.05 1.25

River corridor 4.79 0.17

Deciduous forest 1.55 0.09

Conifer forest 5.55 0.16

Mixed deciduous forest (50-80% deciduous) 2.61 0.10

Mixed conifer forest (50-80% conifer) 2.53 0.10

Shrublands 9.13 0.26

Shrub wetland 4.21 0.10

Forested wetland 2.86 0.09

Early successional forest 4.55 0.19
------------------------------------------------------------------------------------------------------------------------

25-ha Average elevation -21.60 3.55

Habitat type evenness 0.38 0.19

Deciduous forest 0.35 0.31

Conifer forest 0.08 0.16

Mixed deciduous (50-80% deciduous) 0.12 0.19

Mixed conifer forest (50-80% conifer) 0.17 0.23

Shrublands 0.01 0.07

Shrub wetland 0.02 0.05

Forested wetland 0.08 0.13

Early successional forest 0.05 0.12
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more heterogeneous habitat would be more attrac-
tive to grouse, and thus included indices of habitat
type richness (total number of habitat types), even-
ness (relative abundanceofhabitat types) anddiver-
sity (a composite of richness and evenness; DeJong
1975) as variables in the model. Grouse are non-
migratory (Rusch et al. 2000), and thus any impor-
tant seasonal habitats must be contained within
their annual home range. In contrast to a standard
binary habitat value (habitat type is present vs
absent), these distance-based and percent coverage
variables allowed us to partially insulate our model
from potential seasonal bias of location data. By
using distance and percent cover based variables,
grouse habitat use could be influenced not only by
habitat occupied at the time of survey, but also by
surrounding habitat that may have been occupied
during a later season.
We found no existing GIS data that specifically

identified regenerating early successional forest
habitat. Although rare in Rhode Island, early suc-
cessional forest is an important component of
grouse habitat, so, we created a GIS coverage of
young forest habitat by interpreting leaf-off 1:5,000
scale digital color orthophotographs. Specifically,
we systematically searched 100-ha grid cells for
characteristics associated with a recently disturbed
and regenerating forest (i.e. visible breaks in the
forest canopy, obvious woody regeneration, and
clearly defined boundaries). We only considered
patches with area >0.4 ha, the minimum area re-
quired to support a breeding pair of grouse (Gullion
1984c). We used known patches of regenerating
forest as reference sites when interpreting photos,
and visited a randomly selected subset (20%) of
digitized patches to ground truth photo interpreta-
tion accuracy. This process identified 85.0 ha of
early successional forest habitat in the study area
and 279.8 ha in the expanded area. Individual
patches of early successional habitat ranged from
0.4 ha to 13.6 ha, with an average size of 1.6 ha
(¡1.79 SD), and patches larger than 4.0 ha were
uncommon. We calculated continuous values for
this coverage as described above.
Collinearity between habitat variables has been

identified as a potential cause of instability in parti-
tionedD2 results (Rotenberry et al. 2002, Browning
et al. 2005). We therefore created a correlation ma-
trix and eliminated one variable from pairs where
r>j0.70j. We used this criterion to eliminate the
wetlands variable, which was collinear with the
forested wetlands variable at both scales, and the

habitat type diversity and richness variables, which
were collinear with habitat type evenness at the
25-ha scale.

Model assumptions

One assumption inherent to all SDMs is that the
species is in equilibrium with its environment
(Guisan & Zimmerman 2000, Guisan & Thuiller
2005), i.e. that the species occupies the full range of
ecological conditions that can support it. This as-
sumption can be violated if a species’ distribution is
limited by constraints such as dispersal or competi-
tion (Svenning & Skov 2004, Guisan & Thuiller
2005) that prevent the species from occupying
otherwise suitable habitat. At a range-wide scale,
dispersal limitations likely exclude grouse from
some geographic areas that contain suitable habitat
(Gullion 1984a). However, as we were interested in
predicting habitat distribution at a more localized
scale, we did not expect that dispersal would limit
grouse distributions in our study. A second critical
assumption is that the species’ minimum habitat
requirements are included in model construction.
This assumption is often difficult to fully meet be-
cause coarse-scale geospatial data is rarely adequate
to describe the underlying biological processes that
drive habitat use (Scott et al. 2002). Nevertheless,
geospatial data is useful to describe patterns, and
we selected variables based on structural character-
istics common to certain habitat types and spatial
scales thatwe speculatedwoulddrive grousehabitat
use.

Partitioned D
2
model construction

We used SAS code (SAS Institute 2002) provided
byRotenberry et al. (2006) to create twopartitioned
D2 models of grouse habitat similarity at 1-ha and
25-ha scales. Complete descriptions of the theory
and mechanics behind partitioned D2 can be found
elsewhere (Rotenberry et al. 2002, Browning et al.
2005, Rotenberry et al. 2006, Watrous et al. 2006),
but here we provide a brief outline of the modeling
procedure. We performed a PCA for each model to
describe variance in the presence data. This parti-
tioned the potential full Mahalanobis D2 model
(Clark et al. 1993) into p components, where p was
equal to the number of habitat variables included.
Some subset, k, of these components is selected to
formulate the partitioned D2 model (our selection
procedure is described below). Unlike traditional
interpretation of aPCA,only principal components
with low eigenvalues are considered for inclusion in
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k. These low components contain the least variance
in the data, and thus represent the most consistent
aspects of the species’ habitat use (Rotenberry et al.
2006). Variables that load highly on components
selected for k are assumed to be the characteristics
most closely associated with the species’ habitat dis-
tribution (minimum habitat requirements; Brown-
ing et al. 2005, Rotenberry et al. 2006).
Using eigenvectors and eigenvalues from each of

the k selected components, and the same habitat
variables measured at locations with unknown oc-
cupancy(hereafterunknownlocations),wewereable
to calculate a cumulative distance statistic, D2(k),
for all unknown locations. D2(k) summarizes the
cumulative multivariate distance between habitat
values at an unknown location, and the mean of
values for all presence locations. This provides a
measure of the degree of similarity between the un-
known location and the mean of habitat values at
all presence locations. D2(k) values are difficult to
interpret, because values can range from 0 (com-
pletely similar) to infinity (Browning et al. 2005,
Rotenberry et al. 2006). Consequently, we calcu-
lated P-values by comparing D2(k) to an approxi-
mating x2-distribution (Browning et al. 2005, Ro-
tenberry et al. 2006, Watrous et al. 2006), which
yielded an indexed output of values ranging from 0
to 1 that represented the probability that habitat
present at any unknown location contained grouse
habitat. We calculated P-values from D2(k) for all
points (both presence and unknown) at 100 m (1-ha
model) and 500 m (25-ha model) intervals within
our study area, and converted point data to a raster
GIS coverage with equivalent cell size to create
a predictive habitat probability map for each
model.

Selection of D
2
(k) and test of model stability

We tested model stability and placed lower bounds
on our selection of k using crossvalidation (Brown-
ing et al. 2005). While crossvalidation is useful for
removing unstable components with 0 or near-zero
eigenvalues, theselectionof theupperboundsonk is
still largely qualitative. To place an upper bound
on k, we decided to consider only components with
non-zero eigenvalues<1.0, andwe only selected the
subset of components that explained as near, but no
more than, 20% of the cumulative variance in the
data.Althoughsubjective, these criteriaprovidedus
with guidelines that were consistent between com-
peting models, and improved our ability to directly
compare each model.

Model evaluation and comparison

between models
We considered all variables with eigenvector load-
ings ij0.45j to be the most important variables on
each partition, as these variables ultimately would
have the greatest influence onmodel prediction.We
used methods similar to Browning et al. (2005) to
identify a habitat threshold, which is necessary to
separate potential habitat from non-habitat, and
to identify patch structure and total habitat area.
When selecting a threshold P-value, there is a trade-
offbetween classification accuracy andmodel speci-
ficity, since a low threshold P-value will correctly
classify more points, but will do so by predicting a
larger areaasprobablehabitat. This in turnwill lead
to incorrectly classified non-habitat, and increased
error of commission. Thus, the optimum threshold
P-value will strike a balance between accuracy and
specificity. To define an optimum threshold, we
classifiedP-values intogroupsof0.05 from0.0 to1.0
(i.e. 0.0, 0.05, 0.10 … 1.0.), identified the percentage
of correct classifications for eachgroup, anddivided
this value by the percentage of the study area
identifiedasprobablegrousehabitat.Thisproduced
a ratio of accuracy:specificity, and we assumed
that the threshold value with the lowest ratio repre-
sents the optimum habitat threshold for a given
model.

BecausePCAdoesnotoffer a traditionalmeasure
of goodness-of-fit or effect size, we evaluatedmodel
performance using jackknife resampling (Manly
1998, Browning et al. 2005). As our data set con-
sisted of a large number of presence locations, re-
moval of only one presence location would have
little influence onmodel outcomeandwould tend to
overestimatemodel accuracy.We used the raw tele-
metry data points and calculated a 90%kernel den-
sity estimate, pooled across individuals, which iden-
tified 14 clusters of point locations that presumably
corresponded to 14 discrete areas of core grouse
habitat. We withheld clusters one at a time with re-
placement, and assessed model accuracy based on
the average classification within withheld habitat
clusters.

We compared models based on reclassification
accuracy and by comparing predicted overall ac-
curacy (non-resampled) with potential habitat area
at threshold.Toidentifythe 'best'model,weassessed
how accurately each model classified the maximum
number of locations while still identifying a rela-
tively small area as potential habitat. Thus, the 'best'
model would achieve an optimum balance between
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accuracyandpredictedhabitat area.Wealsovisual-
ly evaluatedmapoutputs fromeachmodel basedon
our familiarity with the study area to ensure that
outputs were reasonable.

Expansion of model coverage

Once satisfied with the 'best' model’s performance
at the study area scale, we expanded the model by
calculating D2(k) and its associated P-values for a
much larger area (hereafter the expanded area).We
required an expanded area that was large enough to
be useful for evaluating grouse habitat distribution
ata landscapescaleaswellasanareaofmanagement
interest. At the same time, we wanted to minimize
the degree towhichwe exceeded themodel’s level of
inference in areas where habitat conditions differed
fromtheoriginal studyarea.Theresultingexpanded
area covered 735 km2 (approximately the south-
western � of the state), included the majority of
state-controlled Wildlife Management Areas in the
region (see Fig. 1), andwas approximately 4.5 times
larger than the original study area.

Results

Selection of D
2
(k) and test of model stability

Models at both scales included p=10 principle
components. We selected k by including compo-
nentswithnon-zeroeigenvalues<1.0 thatdescribed

<20% of the total variance for each model. This
resulted in a selection of D2(k) based on principal
components (PCs) 7-10 for bothmodels. In general,
crossvalidation results showed that component ei-
genvalueswererelativelystableamongiterations for
each model (Table 2). In each case, eigenvalues av-
eraged across iterations tracked closely with full
model eigenvalues for each component, with small
standard deviations (see Table 2). No iterations pro-
duced components with eigenvalues of 0 or close
to 0, suggesting overall stability for both models.
Additionally, every iteration resulted in the same
selection of k=4.

Model thresholds and area of predicted habitat

Both models retained similar levels of accuracy at
threshold, but differed substantially in the amount
of total habitat area predicted. The 1-ha model had
the greatest (non-resampled) classificationaccuracy
(83.1%), and identified 27.6% (4,475.5 ha) of the
studyareaaspotential habitat at a thresholdof 0.15.
The 25-hamodel had similar classification accuracy
(81.4%), and identified 62.5% (10,133.8 ha) of the
studyareaaspotentialhabitatatathresholdvalueof
0.25. Average resampled accuracy was>50%, and
averaged P-values were greater than model thresh-
old levels for both models. The 25-ha model had
an average reclassification accuracy of 0.57, and
averageP-valueof 0.39,whereas the 1-hamodel had
similar values of 0.54 and 0.30, respectively.

Table 2. Eigenvalues from resampled (crossvalidation) and full partitioned Mahalanobis D2 models of ruffed grouse habitat use in
western Rhode Island, USA. Crossvalidation eigenvalues are averaged for all crossvalidation iterations and given with SD of
crossvalidation iterations.

Scale Principal component Crossvalidation eigenvalue Crossvalidation SD Full model eigenvalue Difference

1-ha 1 2.33 0.09 2.41 0.08

2 1.93 0.10 1.74 -0.19

3 1.41 0.07 1.49 0.08

4 1.21 0.08 1.18 -0.03

5 0.94 0.04 1.18 0.06

6 0.83 0.08 0.84 0.01

7 0.49 0.02 0.46 -0.03

8 0.37 0.02 0.43 0.06

9 0.30 0.02 0.28 -0.02

10 0.18 0.01 0.17 -0.01
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

25-ha 1 2.55 0.07 2.55 0.00

2 1.70 0.09 1.69 -0.01

3 1.19 0.03 1.17 -0.02

4 1.10 0.02 1.10 0.00

5 0.98 0.03 0.98 0.00

6 0.88 0.04 0.90 0.02

7 0.61 0.05 0.61 0.00

8 0.52 0.04 0.53 0.01

9 0.33 0.02 0.33 0.00

10 0.14 0.01 0.14 0.00
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Important habitat variables

For eachmodel, a number of habitat variables were
identified as important correlates to grouse habitat
use.For the1-hamodel,D2(k) includedPCs7-10,all
ofwhich had eigenvaluesj0.48 and explainedup to
14%of the overall variance (Table 3). Early succes-
sional proximity loaded highly on PC10, riparian
corridor and conifer forest proximity loaded most
highly on PC9, shrub wetland and mixed conifer
forest proximity loaded highly on PC8, and decidu-
ous forest, conifer forest and shrub wetland proxi-
mity loaded highly on PC7 (see Table 3).
For the 25-ha model, D2(k) included PCs 7-10,

which all had eigenvalues j0.61, and explained up
to 16% of the overall variance (see Table 3). De-
ciduous forest and mixed conifer forest percent
coverage loadedhighly onPC10, shrubwetlandand
early successional coverage loaded highly on PC9,
and habitat type richness and deciduous forest
coverage loadedhighlyonPC8.Novariables loaded
>0.45 on PC7 (see Table 3).

Model evaluation and final model selection

The 25-ha model produced higher jackknife reclas-
sification accuracy than the 1-ha model, but the

latter model performed considerably better than
chance.Whenoverall (non-resampled) accuracywas
considered, both models performed well (>80%)
at threshold, with the 1-ha model capturing the
greatest classificationaccuracy.Whenwecompared
habitatprobabilitymaps for the twomodels (Fig. 3),
the 1-hamodel depicted a clear patch structure that
was consistent with our knowledge of grouse distri-
butions in the study area, whereas the 25-ha full
model produced a confusing output with no patch
structure.Ofthetwo, the1-hamodelalsopredicteda
smaller land area as probable habitat (126% less
total landarea),andthuswasmoreconservative.We
selected the 1-ha model as the 'best'model, and ex-
panded its extent.

Distribution of potential grouse habitat

The 1-hamodel of grouse habitat distribution iden-
tified approximately 15.5% (11,463 ha) of the ex-
panded area as potential grouse habitat (see Fig. 3).
The largest single habitat patch was in Arcadia
(1,661.8 ha), and two other large patches were
identified to the north and east of this patch. The
second largest patch (920.2 ha) fell partially within
the Tillinghast management area. Other patches of

Table 3. Eigenvalues, variance (%) and cumulative variance explained (%) (A) and eigenvector loadings (B) from competing
partitioned Mahalanobis D2 models of ruffed grouse habitat use in western Rhode Island, USA. Cumulative variance begin with
the lowest principle component. Variables at 1-ha scale are the distance (metersr100) from the center of each cell to the center of
the nearest neighboring cell of each habitat type. Variables at the 25-ha scale are the percent coverage of each habitat type within
each cell.

Scale

Principal

component Eigenvalue

Variance

explained (%)

Cumulative

variance (%) Variable Principal component

1-ha A. B. PC7 PC8 PC9 PC10
------------------------------------------------------------------

1 2.28 23 100 ELEVATION 0.294 -0.424 0.335 -0.410

2 1.94 19 77 RIVER PROX -0.340 -0.183 -0.513 0.176

3 1.40 14 58 DECID PROX 0.477 -0.228 0.183 0.303

4 1.24 12 44 CONIF PROX 0.501 0.090 -0.461 -0.098

5 0.94 9 32 DECID/CONIF PROX -0.189 0.388 0.315 -0.337

6 0.86 9 22 CONIF/DECID PROX -0.130 0.462 0.278 0.383

7 0.48 5 14 SHRUB PROX 0.042 0.247 -0.107 -0.419

8 0.37 4 9 FORWET PROX -0.116 -0.153 0.413 0.001

9 0.31 3 5 SHRBWT PROX 0.477 0.464 0.049 0.234

10 0.18 2 2 ESUCC PROX -0.063 -0.251 0.170 0.457
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

25-ha 1 2.55 25 100 AVGELEV -0.350 0.447 -0.045 0.133

2 1.69 17 75 EVENESS 0.319 0.736 0.100 -0.199

3 1.17 12 58 DECID% -0.152 0.621 -0.143 0.470

4 1.10 11 46 CONIF% 0.221 -0.093 -0.125 0.434

5 0.98 10 35 DECID/CONIF% -0.197 -0.094 0.059 0.443

6 0.90 9 25 CONIF/DECID% 0.052 -0.104 0.230 0.517

7 0.61 6 16 SHRUB% -0.320 -0.423 -0.258 0.102

8 0.53 5 10 FORWET% 0.017 0.103 0.078 0.229

9 0.33 3 4 SHRBWT% -0.425 0.077 0.499 -0.050

10 0.14 1 1 ESUCC% 0.382 -0.086 -0.550 0.072
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habitat tended to be smaller (<400 ha) and rela-
tively evenly spaced throughout the expanded area.
State wildlife areas contained 3,201 ha of identified
grouse habitat, whereas the remaining 8,262 hawas
located on privately owned property.

Discussion

Habitat characteristics associated with grouse

presence

It is well documented that grouse require diverse
resources thatareprovidedbymultiplehabitat types
and/or structures (Bump et al. 1947, Gullion 1984a,
Rusch et al. 2000, Norman et al. 2004). Multiple
surrogate habitat types played a large role in our
model’s predictions, and areas that were located
near all or most of these habitat types were con-
sistently predicted as grouse habitat. Conversely,
areas that were relatively homogeneous were typi-
cally predicted as non-habitat. The important habi-
tat types that influenced our model’s predictions
likely provide various resources that are consistent
with current knowledge of grouse habitat require-
ments.

Grouse typically select habitat with high woody
stem density and abundant herbaceous vegetation
(Bump et al. 1947, Rusch 2000, Dessecker &
McAuley 2001, Haulton et al. 2003, Whitaker et
al. 2006) which are both common in early succes-
sional forests (Dessecker & McAuley 2001). How-
ever, individualpatchesofearlysuccessionalhabitat
inour studyareawere typically too small (average=
1.6 ha¡1.7), and lackedtheseraldiversitynecessary
to support a grouse home range. As such, we specu-
late that grouse utilize several habitat types as sur-
rogate sources of woody stem density and herba-
ceous vegetation.Abundantmoisture and nutrients
in shrub wetlands support dense shrub tangles and
a well-developed herbaceous layer. Forests with
mixed coniferous and deciduous species (e.g. pitch
pine and scrub oak forests) typically have diverse
crown height and structure, and hence allow sun-
light to reach the forest floor and promotes shrub
growththatprovidesincreasedstemdensity.Riparian
corridors also typically have a well-developed her-
baceous layer because of abundant soil moisture
and nutrients. We suggest that grouse in our study
consistently used areas in close proximity to mixed
conifer forests because these areas provide high
woodystemdensity, ripariancorridorsbecause they
provide a dense herbaceous layer, and shrub wet-
lands because they provide both of these habitat
components.

Mast fruits, and especially hard mast, are im-
portant to the ecology of grouse inhabiting oak-
hickory forests suchas those found inRhode Island.
In years with abundant mast crops, grouse home
range size decreased (Whitaker 2003), and repro-

Habitat probability

Figure 3. Predicted ruffed grouse habitat probability within the
studyareabasedonpartitionedMahalanobisD2modelsof ruffed
grouse habitat use at two spatial scales. Predictions represent the
probability thatan individualcell is similar tohabitatwithknown
ruffed grouse usage in the Arcadia Management Area.
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ductive output increased (Devers et al. 2007). De-
ciduous forests in Rhode Island typically contain
multiple mast species (e.g. red and white oaks and
beech) and provide the most consistent source of
hardmast inthestate,whichmayexplainwhygrouse
locations were consistently located near deciduous
stands.
Conifer forests in Rhode Island typically contain

large stands of mature white pine with an open
understory, little woody stem density, and minimal
mast production. Such conifer stands can provide
excellent concealment for avian predators and are
typically avoided by grouse (Gullion 1970, Gullion
&Alm 1983). Conifer forest was an important vari-
able in the 1-hamodel, but areas thatwere predicted
as potential habitat did not typically contain this
habitat type.Thus,wespeculate that the importance
of this variable inourmodel likely reflects consistent
grouse avoidance of mature conifer stands.

Patterns in habitat availability and their

implications

The 1-ha model predicted 4,524 ha (27.9%) of po-
tential grouse habitat in the study area, and
11,463 ha (15.5%) of potential habitat in the ex-
panded area. Recent surveys suggest that grouse
densities in our study area are extremely low
(E. Blomberg, unpubl. data), and that populations
have declined substantially (Tefft 1999, 2007).
Extensive use of surrogate habitats suggests that
reduced availability of high-quality early succes-
sional habitat may negatively effect demographic
rates and limit grouse populations in the study area.
Consistent with this idea, Endrulat et al. (2005)
found that grouse in our study area occupied
considerably larger territories than reported in
previous studies of grouse home range. Also,
Devers (2005) reported lower survival and re-
production for grouse in our study area compared
to other study sites in the southern part of the
grouse’s range.Habitatmodelsbasedon individuals
in marginal habitat likely include extensive low-
qualityhabitat, andourmodel’s relatively largearea
of predicted habitat likely reflects the overall low
quality of grouse habitat in Rhode Island. Given
recent declines, it is important to note that habitat
identified by our model may not represent truly
suitable habitat, hence our reliance on the term
probable habitat throughout this paper. Whether
current conditions in Rhode Island are adequate to
maintain viable populations at low densities re-
mains unclear, although recent downward popu-

lation trends for grouse in the state (see Fig. 2; Tefft
1999, 2007) suggest they are not.

In southwesternRhode Island, privately control-
led lands contained approximately 72% of the pre-
dicted grouse habitat in the expanded area (Fig. 4).
This suggests thatprivate landsmanagement should
be a priority for grouse conservation in the state.
However, privately controlled forestland in Rhode
Island typically consists of small properties (aver-
age=5.2 ha,>80%ofprivateparcels<4.0 ha;Butler
&Wharton2002) thatmaybe too small and isolated
to provide adequate grouse habitat. Conversely,
maintenance of evenly dispersed patches of high-
quality grouse habitat on state-owned areas may
provide source populations for adjacent areas. In
either case, management effectiveness will depend
on the factors that influence population response
to habitat manipulation at the landscape scale;
questions that remain unanswered. In light of this
uncertainty, future research should focus on how
landscape-scale habitat availability, distribution
and quality influence grouse population dynamics.
Predictive habitat distribution models such as ours
shouldproveuseful for designingand implementing
this future work.

Performance and evaluation of partitioned D
2

models

Our study is the first to evaluate partitioned D2

models based in part on the total extent of predicted
habitat. If we had used only classification accuracy
to evaluate model performance, we would have
considered the 25-ha model a strong model even
though its accuracy was achieved only because a
much larger area (which included non-habitat) was
predicted as potential grouse habitat. In contrast,
the 1-ha model had similar accuracy, but did so
without predicting an unduly large area of potential
habitat.Wesuggest thatbothclassificationaccuracy
and the extent of predicted habitat be used to eval-
uateSDMsregardlessofanalysismethod, especially
when population numbers are low and required
habitat is likely to be uncommon.

A potential source of bias in this or any SDM is
groupings of presence data, such as age, gender or
seasonally used habitats, which may bias results if
one group is over-represented and driving model
results. For example, if location data were collected
primarily during one season (such as a summer field
season), inferences about annual habitat use could
notbemade. Inourtelemetrydataset locationsfrom
different ages, genders and seasonal habitats were
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evenly represented (seeMethods), and thus we con-
sider our model results robust with respect to our
presence data.
Calenge et al. (2008), recently suggested that par-

titioned D2 may be sensitive to inclusion of widely
available habitat types, which may influence model
results by having universally low variance in the
studyarea.These authors propose amodificationof
partitioned D2 to deal with this non-trivial issue by
performing an additional partition of D2(k) that
incorporates environmental availability into the
model. We did not include this additional step into
our modeling process because we felt that the en-
vironmental variables in our model had strong bio-
logical justification, and thus merited inclusion re-
gardlessofavailability.Nevertheless, thebulkofour
variables were relatively limited in availability in
the study area, and as such were unlikely to have
the negative effect on model results suggested by
Calenge et al. (2008). This is supported by the fact
that early successional forest had the most limited
availability (<0.5%of total land cover) of any vari-
able in our data set, loaded highly on the lowest PC,
and thuswas themost consistent variableutilizedby

grouse. One notable exception is deciduous forest,
whichcomprises thebulkof thestudyarea (y55%of
total land cover), but is clearly linked to hard mast
production that is crucial as a winter food source
for grouse (Whitaker 2003, Devers et al. 2007). Al-
though deciduous forest was identified as an im-
portant habitat variable, it loaded highly on the last
PC (PC7) included in our analysis, which indicates
lower importance of the deciduous forest compared
to those variables loading highly on PCs 8-10.

Implications for management

Partitioned D2 provided us with an efficient stati-
stical technique to predict the distribution of poten-
tial grouse habitat in Rhode Island. We suggest
our model be used as an approximate estimate of
grousehabitatdistribution tofocusfieldsurveysand
identify sites with high potential when planning
management. For example, the model identified a
sizeable patch of potential grouse habitat in the
Tillinghast Management Area, which was recently
(2006) acquired through a joint purchase by The
Rhode Island Department of Environmental Man-
agement, TheNatureConservancy, and the townof

Habitat probability

Figure4.Patchesofpotential ruffedgrouse
habitat in southwestern Rhode Island,
USA, as predicted by a partitionedMaha-
lanobis D2 model. Patches were defined as
areas with probability values greater than
model threshold (0.15). Wildlife manage-
ment areas controlled by the Rhode Island
Department of Environmental Manage-
ment include: 1) Nicholas Farm, 2) Tillin-
ghast/Wickaboxet, 3) Big River, 4) Arca-
dia, 5) Rockville, 6) Black Farm, 7) Caro-
lina and 8) Great Swamp.
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West Greenwhich. If field surveys confirm grouse
presence or habitat potential,managers canwork to
create high-quality early successional habitat to
benefit an existing grouse population on this state-
managed property.
Early successional forest was the most consistent

habitatusedbygrouse inourstudy (asevidentby the
variables high loading on the lowest principle com-
ponent;Rotenberryetal. 2006),andthere is clearlya
need to create more early successional forest to en-
hancegrousepopulations intheregion(Dessecker&
McAuley 2001). Availability of more early succes-
sionalhabitat inRhode Islandwould likelydecrease
grouse reliance on surrogate habitats, improve sur-
vival and reproductive rates, and bolster future
population viability. Management agencies should
continue to focus efforts on increasing the avail-
ability of high-quality early successional habitat
using established forest management techniques
(e.g. Gullion 1984b, Jones et al. 2004, Storm et al.
2003, Whitaker 2003), as the availability of these
areaswill likely continue to limit grousepopulations
in Rhode Island, and throughout the eastern USA.
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