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Amethod to estimate roe deerCapreolus capreolus density at various
spatial scales in a fragmented landscape

Daniele Iannuzzo, Stefano Focardi, Elisabetta Raganella-Pelliccioni & Silvano Toso

Estimating the density of wildlife populations is still a difficult task, especially when you work with spatially open
populations and you must relax the assumption of closure, which is the basis of most methods currently used. Further

difficulties arise when obtaining density estimates at small spatial scales. Using eight years (1996-2003) tomonitor data
from a roe deerCapreolus capreolus population that lives in a sub-Mediterranean environment in central Italy, we were
able to estimate local density (at a spatial scale of one home range) by using a large sample of radio-marked animals.
Local density estimates could be obtained only in zones in which radio-marked deer were available in sufficient

numbers. To estimate local density in the whole study area, we developed a calibrationmodel, which allowed us to infer
density where radio-marked deer were absent or scarce. To do this, we computed the mark-resight density estimates
(using radio-marked animals) and related these estimates to linear andnon-linear functions of animal count and surface

area of fields, to obtain a set of density estimators. Then, we selected a linear combination of such estimators, whose
quality was assessed by cross-validation. Our results show that the method we propose can be effective in investigating
small-scale spatial structure of density in a roe deer population.We see several potential applications of this method for

both research and management purposes.
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Estimation of population abundance is a fast

developing issue. Several approaches, such as

distance-sampling and capture-mark-recapture

(Borchers et al. 2002), are available for closed

populations. The estimation of spatially open pop-

ulations’ size is still a difficult task, especially if

one is interested in densities rather than abun-

dances.

For spatially closed populations, the estimation

of animal numbers and densities is equivalent, since

the area size is fixed. However, this is not so for

spatially openpopulations, which are the rule rather

than the exception in wildlife management. The use

of radio-telemetry may provide a solution to this

problem, as shown by Eberhardt (1990) and White

& Schenk (2001). Density estimates based on radio-

telemetry were calculated successfully for bearsUr-

sus sp. (Miller et al. 1987, 1997), goshawks Accipi-

ter gentilis (Kenward et al. 1981), roe deerCapreolus

capreolus (Focardi et al. 2002b, Hewison et al.

2007) and CMR methods were used for the house

mouse Mus muscutus (Efford 2004), and distance

sampling can also provide population density

estimates (Buckland et al. 2001, Focardi et al.

2006).

For spatially open populations such methods are

reliable provided that the survey is so fast that one

obtains a snapshot estimate (seeKenward et al. 1981

for another approach to relax the assumption of

closure). Focardi et al. (2002b) estimated the density
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of the roe deer population at Tredozio (in central
Italy) at a 200-ha scale using mark-resighting and
then calculated the average densitywith amaximum
likelihood approach by pooling four count sessions
(White 1996). Their assumption was that even if
some movement occurred across the border of the
area, it was negligible given the small border-area
ratio. However, during the counts at Tredozio some
radio-marked deer, which were detected outside the
area just before the beginning of the survey, were
subsequently sighted during the two-hours trial.
This problem, probably negligible at a large spatial
scale, may become relevant at small scale when the
border-area ratios increase.

The importance of investigating ecological pat-
terns at various spatial scales was reviewed by Ray
&Hastings (1996). Local density, i.e. the density at a
very small scale, is recognised as being more and
more important. For roe deer in particular, the
importance of local density was pointed out by
Pettorelli et al. (2005), who detected an influence of
environmental variables on fawn survival on the
scale of a single home range. Moreover, local den-
sity can be used to estimate large-scale density if
necessary, whereas the inverse, of course, does not
hold.

Local density estimation is a relatively novel issue
with theoretical questions still being unaddressed.
One major point is that for local density estimation,
the closure assumption does not hold. Each in-
dividual, which inhabits the surveyed zone, has a
given probability (usually , 1) of staying inside the
zone at a given time. Density can be redefined as the
average number of individuals staying inside the
surveyed zone. Of course, if the closure assumption
is valid, i.e. the probability of staying inside the zone
is one, this interpretation is completely consistent
with the usual definition of density.

Exploiting an idea presented by Kenward et al.
(1981), Focardi et al. (2002a) relaxed the assump-
tion of spatial closure and were successful in
estimating roe deer density at a very small scale
(i.e 10 ha) by combining capture-mark-resighting
techniques using radio-telemetry. However, since
the size of the count unit in this case was very small,
simply by chance many zones contained too few
marked animals or none at all. Accordingly, the
estimates obtained by Focardi et al. (2002a) were
scattered over the study area (24 reliable estimates
out of 45 surveyed zones) and were concentrated in
the areas with the highest presence of marked
animals. This outcome was unfortunate because,

due to the lack of local density estimates for the
whole study area, we could not analyse the effect of
local density on roe deer demography. The aim of
our paper is to further develop the work of Focardi
et al. (2002a) and to present a method that is
amenable in estimating the local density even in
areas without marked animals.
Basically, our method originates from sightabil-

ity models, which have often been used to estimate
the size of ungulate populations (see e.g. Poole 2007,
Freddy et al. 2004 and White & Schenk 2001 for a
summary). In sightability models, the detection
probability is computed using a trial survey where
detectability of radio-marked animals is modelled
as a function of environmental variables in a logistic
regression framework. Once sightability is comput-
ed, one can derive population size (Borchers et al.
2002).
Central to our work is the idea that individual

sightability is influenced by population density,
vegetation openness and fragmentation. We sup-
pose that biological and geometrical issues can
influence the rate at which deer can be seen at a
survey point. An example of a biological reason is
that at higher densities, food shortage can force deer
to appear in open areas; a geometrical reason could
be that the edge of a survey area grows as the square
root of its extension. These relations have a non-
linear formandwe expect other relations of this type
to influence deer sightability.
More specifically, we derive a calibration model

using local density estimates as dependent variable
and linear and non-linear functions of counted
animals and survey zone area as regressors.

Material and methods

Study area

Our study area extends over approximately 5 km2 of
a hilly landscape in north-central Italy (44804’3"N,
11844’30"E) with woods covering 47% of the whole
surface. Woods in the area are predominantly
coppice (i.e. deciduous oakQuercus spp., hornbeam
Ostrya carpinifolia, chestnut Castanea sativa, ash
Fraxinus ornus and maple Acer sp.) and coniferous
plantations (mostly pine Pinus nigra) with a few
cultivated chestnut and oldwoods. Open vegetation
covers 48% of the whole area, consisting mostly of
cultivated fields (hay, cereals, sunflower Helianthus
annuus and pastures) with a significant portion of
abandoned fields.
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A stream and an adjoining paved road divide the
study area into two subareas. The subareas (Monti
on the southeastern side and Collinaccia on the
northwestern side) share most of their relevant
characteristics for vegetation composition of woods
and types of cultivations. Nonetheless, the average
open field area is 6 ha for Collinaccia and 11 ha for
Monti.

The climate in our study area is favourable for roe
deer. The averagemonthly temperature never drops
below 08C and there was no snow cover during the
surveys, as snow cover in March is occasional and
short lasting.

Roe deer captures and radio-tracking

Roe deer were captured by driving and the use of
falling long-nets during autumn-winter. Captured
deer were sexed, aged and fitted with Televilt TXE3
radio-collars. Newborns were captured and fitted
with Televilt TXH2 radio-collars during the hiding
period (i.e. end ofMay through 10 June; Raganella-
Pelliccioni et al. 2004).

We performed animal handling according to the
present regulations related to animal welfare and
with constant veterinary assistance. Upon capture
all animals were fitted with a soft mask (to reduce
the animals’ distress) which allowed deer to breathe
normally. Deer were positioned on the right side to
avoid ruminal meteorism which might reduce
respiratory efficiency. A total of 220 roe deer were
captured between 1996 and 2003.

Each deerwas localised 12 times permonthwith a
time-stratified sampling which was distributed over
24 hours.

Single operators equipped with a receiver (Ad-
vanced Telemetry Systems, model R2000 or Wild-
life Materials RX 1000 S) collected at least three
azimuths per fix. Animal location was computed
using software LOCATE (Nams 1990), which es-
timates the position of the radio source based on a
maximum likelihood criterion.

Surveys of roe deer population

We performed surveys at the end of March (i.e.
green-up season in the study area) during 1996-
2003. The observers were trained operators and
were equipped with binoculars and telescopes in
order to be able to read the numbers of the collars
and, thus, individually identify the marked deer.
Counts were performed on four consecutive occa-
sions at dawn and dusk. The observers were located
at vantage points (Mayle et al. 1999) such as

farmyards, hunting hides and roads. Each observa-
tion session lasted for two hours, just after dawn or
before dusk. The number of vantage points ranged
within 19-29 per year in response to changes in the
surveyed area or personnel availability. The oper-
ators were located where they could achieve a full
visual coverage of all fields. Accordingly, while one
field could be monitored by a single operator,
sometimes two or more operators could survey the
same field and a single operator could cover two or
more field portions.Where necessary, the operators
communicated with each other using a radio to
avoiddouble counts.With a total of 135fields, 16-19
fields were surveyed each year.

Statistical methods

Ourmethod consisted of four steps: 1) we computed
themark-resight density estimates to be used as a set
of reference densities, 2) we related these estimates
to linear and non-linear functions of animal count
and surface area of fields to obtain a set of density
estimators, 3) we selected a linear combination of
such estimators based on a set of statistical criteria
and 4) we cross-validated the selected model to test
whether the selected model was able to predict
densities at three different spatial scales: the entire
study area, the subareas and small plots that were
the size of a single home range.
Concerning 1), we obtained the reference density

estimates at small scale using the method described
by Focardi et al. (2002a). The number of deer as-
sociated with each field was estimated by mark-
resight (White & Schenk 2001) using the software
NOREMARK (White 1996). We computed densi-
ty, correcting for a factor accounting for the fraction
of the time that each animal spent inside the field
(Kenward et al. 1981) and divided by the area of the
field. This way we obtained M reference density es-
timates representing our sample units, each ofwhich
pertained to a given field in a given year.
We obtained subarea densities using the same

procedure. The whole area densities were the
average of all the subarea densities, weighted for
subareas extension.
Concerning 2), we used two variables to account

for deer density: the number of counted deer, Oi,
and the field area, (Ai), with i ¼ 1,. . .,M. Oi was
computed as the mean number of deer recorded in a
given field during the four count sessions. Ai was the
area of the horizontal projection of the surveyed
field computed using a GIS.
Let us define q(O,A) a generic function such that
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XM

i¼1

(qi - Di)
2 beminimum, where Di is the estimated

density in the ith count zone. There is no a priori
reason to select a certain function as q. A graphical
exploration of the relationships among D, A and O
allowed us to select a certain number of candidate
models (e.g. linear, exponential and hyperbolic).

The fitting of non-linear functions was made
using PROC NLIN of SAS (SAS Institute Inc.
2000). We obtained G different models (q1,q2,
. . .,qg,. . .,qG) . . .where each qg was an estimator of
density, D.

All the regressors are some function of Oi and Ai.
For a more intuitive understanding of their biolog-
ical meaning, we put Ei¼Oi/Ai and Ui¼Ei/Di. Ei is
an apparent density, while Ui is the ratio between Ei

and the CMR-estimates of density in a given field
and, hence, it represents the intensity of use of open
fields by roe deer. The regressors we used, the func-
tion that was fitted to compute parameter values
and the function that we used as regressor are
shown in Table 1.

Concerning 3), we then exploited all of these esti-

mators to compute a best linear function, R(q1, q2,

. . ., qG). The fitting, computed so that
XM

i¼1

(Ri -

Di)
2 be minimum, was performed using PROC

REG (SAS Institute Inc. 2000). All possible models
were evaluated. We obtained one model with G
regressors, Gmodels with G-1 regressors, G(G-1)/2
models with G-2 regressors,. . ., and G models with
one regressor. We discarded all of the models that
were not full-rank (i.e. at least one regressor was a
linear combination of the others), and then we
ranked the remaining models according to the
Akaike Information Criterion (AIC). Finally, we
tested for collinearity among regressors, discarding
the models in which at least one regressor had
Variance Inflation Factors (VIF)� 10 (Belsey et al.
1980). The model with the best AIC and VIF , 10
for each qg was selected.
The final model reads: R¼s1b1 q1þ . . .þ sgbgqg þ

. . .þ sGbGqG þ c, where sg¼ 0 if qg was discarded,
and sg¼1 if qg entered themodel. bg is the coefficient
of qg and c is the intercept.
Concerning 4), we compared Ri with Di to

evaluate the performance of the estimator R. We
evaluated first the significance of the model used
(Fisher F-test). The level of precision attained by the
model was described computing the median abso-
lute error, which was reported in percentage of the
reference density, D, and its interquartile variation,

Table 1. List of regressors used in our density estimation model.
The functions in the right column (Regressor functions) were
obtained by expliciting density D into the equation reported in the
left column (Fitted functions) and replacing it with q. The
abbreviations are: A¼ field area, O¼ counted deer, E¼O/A, U¼
E/D, a, b, c, d and k are parameters computed by least squares.

Fitted functions Regressor functions

U ¼ aþb/(kþA) q1 ¼ (kOþAO)/((akþb)AþaA2)

U ¼ aþb/Di q2 ¼ O/aA-b/a

D ¼ Oaþb q3 ¼ Oaþb
D ¼ Eaþb q4 ¼ Eaþb
D ¼ aAOb q5 ¼ aAOb

D ¼ a(AO)b q6 ¼ a(AO)b

D ¼ aþ(AO)b q7 ¼ aþ(AO)b

D ¼ aO þ c q8 ¼ aOþc
D ¼ aEþc q9 ¼ aEþc
D ¼ aO q10 ¼ aO

D ¼ aE q11 ¼ aE

D ¼ aOþbAþc q12 ¼ aOþbAþc
D ¼ aEþbOþc q13 ¼ aEþbOþc
D ¼ aAþbOþcEþd q14 ¼ aAþbOþcEþd
D ¼ aþbO/(cþO) q15 ¼ aþbO/(cþO)

D ¼ aþbE/(cþE) q16 ¼ aþbE/(cþE)
D ¼ bAO/(cþAO) q17 ¼ bAO/(cþAO)

Figure 1. Examples of non-linear relations that were minimised to
estimate the qs; in A) the use of fields has an hyperbolic relation
with the field area and in B) the relationship between D and O is
Holling-type 2. The parameters of the equations were estimated
from the whole data set. U is the ratio between apparent and true
densities.
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where D is scaled to 0. Then we tested for the
presence of a significant bias of the predictor
(Student’s t-test), comparing model estimates with
reference densities. Finally the Pearson correlation
(r) between R and D, is an index of a model’s
sensitivity or, in other words, a measure of howR is
able to detect a trend. Finally we cross-validated the
model. We divided our data set into years and
subareas, then we recursively calibrated the model
excluding one stratum, which was then used to test
the performance of the model itself. In such a way,
we tested the robustness of the method with respect
to different environmental and temporal condi-
tions. Note that R estimates at subarea and at the
whole area scales were computed by averaging field
estimates.

Results

The model for the whole data set

We do not show here the outcome for each of the
parameters of the regressors. The plots of some of
the relations that were minimised to compute
regressors in order to provide an intuitive look of
the fits are shown in Figure 1. In Figure 1A, we
plotted apparent density U as a function of field
area. Clearly, this relationship is not linear. In this

examplewe have fitted a hyperbole to the data.Note
how U decreases as the field area increases. In
Figure 1B, we plotted density D against O. Again,
the relationship does not look linear. In the figurewe
minimised a Holling type-2 function. The point is
that density is not usually a linear function of the
number of observed animals.
Two regressors were included in the selected

model (Table 2) which is highly significant (F3,60¼
18.0, P , 0.0001, R2¼ 0.47).
How the estimator (R) was good at fitting the

reference densityD at three different spatial scales is
shown in Table 3. The estimates were unbiased and
their precision was good at all scales. At large and
medium scale the error was well below 20%. As
expected the error decreased at an increasing scale.
No significant bias was evident at any scale. The
correlation indicated that model sensitivity was
quite good for small and medium scales, suggesting
efficient trend detection. The apparent lack of cor-

Table 2. Coefficients of the regressors (q1 and q7 ) entered into the
selected model for the whole data set, standard errors, Student’s t-
tests for difference from 0 and the variance inflation factors (VIF).

Regressors
Parameter
estimate

Standard
error t Pr . t VIF

Intercept 179.71 40.20 4.47 , 0.0001 -

q1 1.31 0.18 7.29 , 0.0001 2.22

q7 -4.44 1.08 -4.13 0.0001 2.22

Table 3. Precision and bias of the estimator calibrated upon the
whole data set, and the correlation between the estimator, R, and
reference density, D, at the three different spatial scales small (’ 10
ha), medium (’ 200 ha) and large (’ 400 ha). Themedian error (in
%) was computed using the absolute value of the difference
between the estimates derived from the model and the reference
density. The percentile error was computed considering the
percentage deviation from the reference density. The Student’s t-
tests for the presence of a bias were performed with N-1 degrees of
freedom. Significant correlations are indicative of a good trend
detection.

Scale N

Precision

Bias Correlation
Median
error

Percentile
error

25th 75th t Pr . t Pearson’s r Pr . r

Small 64 23.60 -14.78 40.53 0.00 1.00 0.69 , 0.0001

Medium 15 10.96 -16.49 7.04 1.48 0.16 0.71 0.0028

Large 7 7.25 -29.33 4.36 1.01 0.35 0.24 0.6073

Table 4. Cross-validation per year. The year reported in the left column refers to the data predicted by the procedure of cross-validation,
whichwere hence excluded by themodel’s computation. For each year of study,we report the selectedmodel, F-test and adjustedR2 for the
selected model.

Year Selected model F Pr . F Adj-R2

1996 R ¼ 161.27 þ 3.88q3-1.16q6-5.83q7 F3,58 ¼ 12.54 , 0.0001 0.45

1997 R ¼ -31.82 þ 0.99q16þ 0.83q17 F2,51 ¼ 22.89 , 0.0001 0.43

1998 R ¼ 162.54 þ 1.41q1- 4.28q7 F2,55 ¼ 32.79 , 0.0001 0.43

1999 R ¼ -27.92 þ 0.97q16þ 0.71q17 F2,49 ¼ 29.44 , 0.0001 0.43

2000 R ¼ 287.74 - 6.79q7þ 1.39q1 F2,47 ¼ 21.35 , 0.0001 0.45

2001 R ¼ 279.89 - 6.86q7þ 1.40q1 F2,52 ¼ 26.09 , 0.0001 0.48

2002 R ¼ 147.84 þ 1.21q1- 3.48q7 F2,55 ¼ 23.30 , 0.0001 0.44

2003 R ¼ 179.64 þ 1.20q1- 4.17q7 F2,56 ¼ 25.69 , 0.0001 0.46
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relation for the large scale was possibly an effect of
the reduced data set characterising this spatial
scale.

Cross validation

The models that we used for cross validation per
year and their results are reported in Tables 4 and 5,
respectively. The results are qualitatively very
similar to the results previously described for the
complete model (see Table 3) suggesting that one
can obtain reliable density estimates for one year
using a model developed for different years. The
bias is always non-significant at all scales and
remarkably low at the small scale. In particular,
the correlations relative to small and medium scales
appear to be high, whereas the performance is lower
at the large spatial scale.

Finally, we investigated whether one can use a
model developed in one subarea to estimate density

in another subarea (Tables 6 and 7), i.e. how much
our model can be exported. These results (when
compared to the previous cross validation per year)

exhibit a lower precision at themedium scale, which
remains below 20%, while the precision at small
scale is even better than in the case of cross

validation per time (see Table 5). Bias is always
not significant. Correlations are good at both scales.

Looking in particular at the small scale, the cor-
relation between the true density and our estimates

is always significant (P, 0.01; see Tables 3, 5 and 7),
while precision is always around 25%.

Our experience showed that the use of both AIC
and VIF for model selection sensibly improved the

cross validations between subareas with respect to
the use of AIC only.

The cross validation by year (see Table 5) is
comparable with the whole data set model (see

Table 3) and the difference is partly due to the
reduced data set used to calibrate the model.
Overall, the results shown in Tables 3 and 5 suggest
that the method is very reliable to estimate local

density even in years following the model’s calibra-
tion or in different subareas.

Discussion

The basicmessage in ourwork is that it is possible to
use calibration models with simple and cheap data
as inputs (in our case field area and number of
counted roe deer) to estimate density at different

scales, provided that reliable density data are
available, e.g. obtained by use of mark-resighting.
Our results are also encouraging if one wants to

predict density using data collected in different years
within the same area. Errors are usually , 20%,
which is acceptable in most of the applications.

Table 5. Cross-validation per year (see Table 4). Precision, bias
and correlation between the estimator and reference density, at the
three different spatial scales (small:’ 10 ha, medium:’ 200 ha and
large: ’ 400 ha). The median error (in %) was computed using the
absolute value of the difference between the estimates derived from
the model and the reference density, D. The percentile error was
computed considering the percentage deviation from the reference
density. The Student’s t-tests for the presence of a bias were
performed with N-1 degrees of freedom. Significant correlations
are indicative of a good trend detection.

Scale N

Precision

Bias Correlation
Median
error

Percentile
error

25th 75th t Pr . t Pearson’s r Pr . r

Small 64 27.03 -13.13 39.60 -0.15 0.88 0.64 , 0.0001

Medium 15 9.74 -19.34 8.87 1.35 0.20 0.66 0.0074

Large 7 7.77 -29.16 5.44 0.92 0.39 0.19 0.6814

Table 6. Cross-validation per subarea. The selected model and F-
test and adjustedR2 for the cross-validationmodels are reported by
subareas. The selection procedure was performed on our data set
removing data relative to the subarea reported in the left column.

Subarea
Selected
model F Pr . F Adj-R2

Monti R ¼ q13 F1,36 ¼ 36.92 , 0.0001 0.49

Collinaccia R ¼ 55.24 -
3.63q7 þ
1.96q3 þ
1.24q12

F3,22 ¼ 6.71 0.0022 0.41

Table 7. Cross-validation by subarea (see Table 6). Precision, bias
and correlation between the estimator and reference density, at the
two different spatial scales small (’ 10 ha) and medium (’ 200 ha;
note that the large scale cannot be evaluated in this analysis). The
median error (in %) was computed using the absolute value of the
difference between the estimates derived from the model and the
reference density, D. The percentile error was computed consid-
ering the percentage deviation from the reference density. The
Student’s t-tests for the presence of a bias were performed withN-1
degrees of freedom. Significant correlations are indicative of a good
trend detection.

Scale N

Precision

Bias Correlation
Median
error

Percentile
error

25th 75th t Pr . t Pearson’s r Pr . t

Small 64 22.81 -11.44 49.80 -0.81 0.42 0.63 , 0.0001

Medium 15 14.66 -14.66 19.35 0.70 0.50 0.59 0.0194
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Our modelling approach is purely pragmatic in
the sense that the functions used (the qs) have no
specificmechanistic interpretation. In this paper, we
used a sort of ’blind’ calibration of our density
estimates. Calibration is usually defined as the
reverse process of linear regression, by deducing
an unknown value of the dependent variable
(density) given known independent variables. How-
ever, given the complexity of factors linking
sightability, habitat structure and density, we do
not expect their relationship to be linear. In fact,
even in sightability models non-linear (exponential)
functions are used to predict animal abundance.
The use of non-linear relationships is in fact com-
monplace when modelling animal detectability
(White & Schenk 2001). A non-linear relationship
between population indices and population abun-
dance was also found by Morellet et al. (2007) for
the roe deer population of Dourdan, France. In
distance sampling non-linear detectability functions
are used to account for different detection patterns
(Buckland et al. 2001). Thus, our choice of qs is
arbitrary (i.e. not derived by mechanistic consider-
ations), but empirically useful and justified from the
literature. Themethod we propose has the potential
to be used for validating population indices such as
the kilometric index of abundance (KIA), which are
often used as management tools for roe deer pop-
ulations throughout Europe (Vincent et al. 1991).
Recently, the use of KIA was extended to other
species of ungulates as well; Maillard et al. (2001)
supported its use for detecting population trends
in an African ecosystem, and Acevedo et al. (2008)
showed that the KIA was well correlated with line-
transect density estimates of red deerCervus elaphus
populations in Spain.

We argue that our method was very successful at
estimating local density of roe deer. We expected to
obtain the best results for the estimates at larger
scales than at a smaller scale. While this turned out
to be true for the precision of our estimates, which
was very good at intermediate and large scales,
correlation and accuracy were worse at the larger
scale. We assume that this unexpected result was
caused by the reduced data set available when the
spatial scale increased, but density differences
between fields and woods may also have played a
role.

Our results confirm the usefulness of our method
both for research and management purposes. For
research, our method can provide reliable local
density estimates where a radio-marked set of roe

deer is available. It allows insights in population
dynamics and regulation, mainly by providing the
researcher with information about the spatial
structure of density.
Note also that the information about density in

an area can be extended to zones in which animals
were not captured, provided that the model is used
only for zones similar to those in which the model
was calibrated. This result was achieved by testing
for collinearity using variance inflation factors
(VIF). In a preliminary phase of our work, we saw
that estimators obtained only with AIC were biased
when used to estimate density between subareas.
Interestingly, a single regressorwas the best solution
only in one case (see Table 6). In all other cases a
combination of regressors performed better than
any single regressor. This supports our choice of
using a multiple regression framework.
In management, the use of simple counts may

determine the adoptions of harvesting quotas which
are inappropriate to fulfill the aims of the manage-
ment. Integrating field counts with a zone-specific
method calibrated in place, game managers can
smooth steep interannual variations of counts,
thereby gaining trust among hunters and allowing
more stable game returns.
The application of our method relies on appro-

priate calibrations.Wildlife managers should invest
resources (at least for some years) to radio-mark
animals. Alternatively, it could be interesting to
investigate the use of surface density modelling
based on distance sampling survey (Buckland et al.
2004, Focardi et al. 2006) as a basis for the cali-
bration model. Distance sampling surveys could be
performed for some years at relatively low costs
(Franzetti & Focardi 2006). Although we have not
yet tried to develop this approach, we believe that
the outcomes could be very fruitful.
Finally, our results will allow us to test the rele-

vance of local density on roe deer population dy-
namics in the same population that was described in
Focardi et al. (2002a,b).Wewill investigate the scale
at which density is relevant to shape life history
traits.
Although our method is quite specific for our

needs, we believe that the general framework can be
adapted to other species and environments.
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