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Researchers and wildlife managers strive for low bias and high precision (i.e. high accuracy) when estimating animal 
population sizes. Distance sampling is currently one of the most widely used monitoring methods. However, it relies on 
strict sampling designs and modeling assumptions that can be difficult to meet in the field. Here, we use data from two 
sub-populations of non-migratory wild Svalbard reindeer Rangifer tarandus platyrhynchus inhabiting flat, open and isolated 
coastal tundra plains, to demonstrate some challenges related to the distance sampling methodology. To achieve this, we 
compared distance sampling line transect estimates with repeated total population counts and combined available software 
tools (R packages unmarked, Distance and dsm) to fulfill the analytical requirements of small study sites in which large areas 
are surveyed relative to the study area size. Based on low variation among repeated total counts (CV  0.02 – 0.06) and 
the virtual absence of false negatives and positives of marked animals, the total counts could be used as reference popula-
tion sizes. Distance sampling estimates were not statistically different from the total count estimates. Our relatively large 
sample size of 143 observations enabled precise distance sampling abundance estimates (CV  0.16 – 0.26) compared with 
other studies in the wild. However, capturing the processes shaping population dynamics would likely require even higher 
sampling effort or other, more resource demanding monitoring tools, such as total counts or mark-recapture. In this type 
of ecosystem, distance sampling nevertheless represents a cost-effective tool suitable for ‘population state’ assessment and 
studies of large-scale spatial distribution patterns. Our study stresses the importance of choosing the appropriate analytical 
tools and estimating the accuracy of the monitoring methods that are used to achieve specific scientific, management or 
conservation goals.

Population size estimates with low bias and high precision 
(i.e. accuracy, Williams et al. 2002, p. 45) are important to 
understand spatiotemporal patterns of wildlife populations, 
thereby informing management and conservation decisions. 
While there are numerous challenges associated with obtain-
ing unbiased and precise estimates of population size and 
demographic rates in space and time (Williams et al. 2002), 
such estimates are essential to understand population fluc-
tuations and their causes (Abadi et  al. 2010, Zipkin et  al. 
2014). Bias and imprecision originate from sources of errors 
that can occur at multiple levels in the measurement of 
population size and vital rates (Cressie et al. 2009, Lebreton 
and Gimenez 2013). These uncertainties are related to 
process variation (i.e. demographic and environmental 

stochasticity) and observational error (Clark and Bjørnstad 
2004, Buckland et  al. 2007, Sæther et  al. 2007). Because 
observational error is not part of the process variation, but 
inherent to the sampling methodology used, it is important 
to identify its different sources (Ahrestani et al. 2013).

Worldwide, the most common method to estimate 
population abundance of wild animals is distance sampling 
(hereafter referred to as DS) (Buckland et al. 2004). Surveys 
are conducted along transect lines or at transect points where 
the detection probability is a function of the perpendicular 
distance from the line or radial distance from the point to 
the object of interest (reviewed by Buckland et al. 2015). DS 
relies on four key assumptions related to study design and 
statistical analysis of the data (Buckland et al. 2015): 1) ani-
mals are distributed independently of the transects; 2) objects 
on or close to the transects are always detected; 3) distances 
are measured without error; and 4) objects are detected at 
their original position. However, the degree to which the 
assumptions of DS are violated in wild populations is largely 
unknown (Morellet et  al. 2007, 2011). Comparisons of 
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bias and precision have been made between DS and other 
sampling methods. Some examples are comparisons with 
capture–mark–recapture, total counts (hereafter referred to 
as TC) and strip transects, in different environments (e.g. 
forest: Focardi et al. 2005, Wegge and Storaas 2009, Amos 
et al. 2014, grassland: Kruger et al. 2008, Amos et al. 2014 
and steppe: Seddon et  al. 2003, Bårdsen and Fox 2006). 
Even for similar types of DS, bias can vary greatly depend-
ing on how the field sampling is conducted (e.g. foot versus 
road line transects; Wegge and Storaas 2009, Marques et al. 
2013). Overall, few studies have assessed the performance 
of DS by comparing estimates to populations of known size 
(but see Wegge and Storaas 2009, Porteus et  al. 2011 for 
ungulates and Glass et al. 2015 for kangaroos).

Recent spatial modeling developments have been incor-
porated into the DISTANCE interface (Thomas et  al. 
2010), whereby a two-stage approach analyzes detection 
and density separately. This is particularly suitable for 
large-scale study areas. By contrast, in small study areas, 
the transect width will often cover most or all of the study 
area. Thus, there could be information about the spatial 
distribution of animals in the observed distances, as well as 
their detectability (Miller et al. 2013). Therefore, in small 
study areas, the detection and density functions should be 
estimated simultaneously (i.e. a one-stage approach, Miller 
et al. 2013; see Glass et al. 2015 for a counter-example of 
a two-stage approach where the search area of all transects 
combined included the entire 76 ha study area). Hence, in 
line transect studies, different analytical approaches may be 
required depending on the type of study area (Miller et al. 
2013).

In this study, we use monitoring data from a high-Arctic  
wild subspecies of reindeer, the Svalbard reindeer Rangifer 
tarandus platyrhynchus, which inhabits tundra with sparse 
vegetation of low stature. The distinctive landscape character-
istics of Svalbard are highly suitable to evaluate the precision 
and sources of error in two methods of estimating animal 

abundance; DS and TC. In this open tundra landscape, 
the detection of reindeer should in principle only vary 
with distance from the transect line as visibility is good. 
Additionally, many coastal sub-populations are isolated in 
small areas by glaciers, steep mountains and the sea and 
so are possible to census on foot by TC. Although never 
assessed quantitatively, it is assumed that TCs of Svalbard 
reindeer give precise and unbiased population size esti-
mates, partly due to the open habitat and partly because 
of the restricted ranging and solitary behavior of the rein-
deer (Aanes et al. 2000, Kohler and Aanes 2004, Tyler et al. 
2008, Hansen et al. 2011). Recent studies suggest that the 
rapidly changing climate in Polar regions (Larsen et  al. 
2014, Nordli et  al. 2014) will strongly impact ungulate 
population dynamics (Rennert et  al. 2009, Hansen et  al. 
2011, 2013). This underlines the need for robust estimates 
of population abundance. Here we take advantage of the 
characteristics of this simple, high-Arctic model system to 
compare reindeer abundance estimates made using DS and 
TC methodologies. In particular, we show that TC esti-
mates are accurate and therefore usable as reference points 
(i.e. ‘known’ population sizes). We are then able to assess 
whether estimates based on DS analysis, using a combina-
tion of R packages (unmarked, Distance and dsm), are dif-
ferent from TCs. We further evaluate some sources of error 
and imprecision.

Methods

Study system

The study was conducted in two sites, the Sarsøyra (40 
km2) and Kaffiøyra (35 km2) peninsulas, close to the Ny-
Ålesund scientific base (78°55′N, 11°55′E; Fig. 1), on Sval-
bard. The study sites lie in the northern Arctic tundra zone 
(Elvebakk 2005) which is characterized by graminoid and 
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Figure 1. Map of the Svalbard archipelago including the two study sites (Sarsøyra and Kaffiøyra) where total counts and distance sampling 
surveys of Svalbard reindeer were conducted. The vegetation map from Johansen et al. (2012) was plotted as background of the inset map 
(the darker the grey, the more of the area is vegetated).
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dwarf-shrub tundra. Reindeer summer habitat is generally 
confined to areas below 200 m elevation, excluding large 
moraines and glaciers. Natural barriers to reindeer move-
ment include tidewater glaciers, steep mountains and more 
recently, year-round open water fjords. Both peninsulas are 
dominated by ‘pioneer vegetation’ (41% of the total cover-
age) and ‘established Dryas tundra’ (39%). The ‘pioneer veg-
etation’ is characterized by vegetation communities with low 
vascular plant diversity and mosses, highly affected by ero-
sion and flooding. ‘Established Dryas tundra’ is dominated 
by Saxifraga oppositifolia and short-growing graminoids on 
coastal plains (Johansen et  al. 2012). With the exception 
of some graminoids, plant height rarely reaches more than  
5 cm above the ground.

The Svalbard reindeer is an endemic resident key herbivore 
that lives in a predator-free environment (but see Derocher 
2000 for predation events by polar bear Ursus maritimus). 
This sub-species is tame compared to most other wild 
Rangifer, and individuals in our study sites can typically be 
approached by humans in summer to within 100 m before 
their behavior is affected (Hansen and Aanes 2015). Their 
space use during summer is relatively limited (Tyler and 
Øritsland 1989), although dispersal events can occur during 
winter (Hansen et al. 2010). Reindeer were absent from our 
study sites for a century before the sub-populations reestab-
lished after a major dispersal event from Brøgger Peninsula 
to Sarsøyra in 1994 (Kohler and Aanes 2004), with onward 
dispersion to Kaffiøyra in 1996 (Fig. 1). Fluctuations in the 
reindeer population sizes are large and typically associated 
with ‘rain-on-snow’ events, which cause high mortality and 
reduced population growth rates (Kohler and Aanes 2004, 
Hansen et al. 2011).

Reindeer data collection

Total counts and marked individuals
We conducted repeated TCs of Svalbard reindeer in 2009 
and 2013 (July to August) in the two study sites (Table 1). 
The natural barriers, limited ranging behavior (Tyler and 
Øritsland 1989) and negligible summer mortality rates 
(Reimers 1983) mean that the assumption of constant 
population size within the area and field season (i.e. closed 

population) is likely met. This also means that the same 
population was counted during each repeated TC. Four pre-
defined routes from south to north, always less than 1 km 
apart, allowed each of the study sites to be covered in one day 
by four observers walking simultaneously. Observers were 
not strictly confined to stay on their route, but expected to 
deviate from the line to utilize terrain features (e.g. small 
mounds) to get the best possible overview, and keep visual 
contact with other observers (e.g. to avoid double counts). 
Observers scanned the area along their route with binocu-
lars (10  42 mm, allowing reindeer detection up to 2–3 
km distance) and communicated by VHF-radio to reduce 
the potential for double counts. Routes were switched 
between observers to reduce bias related to observer het-
erogeneity (Field et al. 2005). All reindeer positions (i.e. of 
single individuals or groups) were marked on a topographic 
map (1:50 000). Repeated TCs were always separated by a 
minimum of four days. All TCs had similar weather condi-
tions with good visibility and little wind.

In addition, we used data from TC and marked animals 
in previous years (1999 and 2000) to evaluate 1) the closure 
assumption based on data from regularly (every 2–3 days) 
tracked VHF-equipped females (19 in 1999 and 23 in 2000, 
Hansen et al. 2009); 2) the probability of missing animals 
in the TC based on the number of VHF-collared females 
known to be present in the study site immediately before the 
TC (27 individuals in 2000, which includes the 23 females 
followed every second-third day); and 3) the probability of 
double counting based on re-sightings of the VHF-marked 
animals (27 individuals) as well as other marked animals  
(26 individuals) during the TC in 2000.

Distance sampling
One single observer conducted line transect DS twice in each 
of the two study sites in 2013 (12 and 19 July in Sarsøyra 
and 26 and 27 July in Kaffiøyra). We chose one random lati-
tude for each of the two DS surveys and placed additional 
parallel transect lines systematically 3 km away either north 
or south from this latitude so as to avoid overlapping rein-
deer observations and violation of the assumption of inde-
pendence (Hammond et  al. 2014, Buckland et  al. 2015). 
Lines were orientated east/west from the sea-shore to the 
mountain foothills. We chose this systematic orientation to 
reduce any potential bias from parallel animal density gra-
dients along the line (e.g. due to plant phenology gradients; 
Marques et al. 2013, Barabesi and Fattorini 2013). In total, 
11 transect lines were walked in the study sites (Sarsøyra, 
total length 19 029 m, three transect lines in first survey and 
two in second survey; Kaffiøyra, 14 937 m, four transect 
lines first survey and two in second survey). Because of the 
random placements of lines in the small study locations and 
because two transect lines (one in each study site) were not 
completed due to bad weather, the surveys had different total 
numbers of transects.

The line transects were walked by the observer at a 
constant speed (2–3 km h–1) without stops, except dur-
ing measurements. A handheld GPS was used to keep the 
line direction. Reindeer were detected on both sides of the 
transect line with the naked eye. When a reindeer or reindeer 
group was spotted, the observer looked only in its direc-
tion until measurements were taken. Each observation is 

Table 1. Overview and summary statistics of the repeated total 
counts (TCs) of reindeer in the two study sites, Sarsøyra and Kaffiøyra, 
Svalbard, Norway. TC values  reindeer abundance from each TC, 
TC estimates  mean reindeer abundance and 95% confidence 
intervals, SE  standard error and CV  coefficient of variation.

Study area Year Dates TC values TC estimates

Sarsøyra 2009 1 July 143 146 [137:155]
CV  0.0313 July 146

23 July 142
4 Aug 153

2013 7 July 241 221 [212:230]
CV  0.0211 July 218

23 July 215
27 July 210

Kaffiøyra 2009 31 July 142 144 [131:157]
CV  0.0423 Aug 146

2013 24 July 144 144 [125:163]
CV  0.06
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corresponding to the dispersion parameter of a quasi-Poisson 
likelihood model (McCullagh and Nelder 1989). Estimates, 
standard errors and profile likelihood 95%-confidence inter-
vals for the true abundances n at each study site and year 
were obtained by fitting a generalized linear model from the 
quasi-Poisson family, with no intercept and with a four level 
fixed effect factor representing the two study sites and the two 
summers (i.e. 2009 and 2013). We obtained the coefficient 
of variation (CV) for n by dividing the standard error by its 
mean abundance estimate.

Distance sampling
Prior to estimating reindeer abundance from the DS line 
transect data, we divided the 11 line transects into 33 
segments, i.e. three equal segments per transect (Sarsøyra: 15 
segments 728–1544 m, Kaffiøyra: 18 segments 107–1047 
m). This allowed us to fit density models that included 
covariates measured at the segment level (Royle et al. 2004, 
Miller et  al. 2013). Transect lengths were relatively short 
compared with their half-widths due to the small scale of our 
study sites and the long detection distances of reindeer. Note 
that segment lengths could not be twice the half-transect 
width, because this would give only one to two segments 
per transect and reduce our ability to detect effects of habi-
tat heterogeneity. We calculated the proportion of vegetated 
area within each segment area (segment length  trunca-
tion distance, ranging from 0.43 to 2.89 km2) from a digital 
vegetation map (Johansen et al. 2012). This was the ratio of 
pixels (spatial resolution of 30  30 m) classified as vegetated 
(corresponding to classes 8 to 18 in Johansen et al. 2012) to 
the total number of pixels. We also right-truncated the DS 
data, as suggested by Buckland et  al. (2001), by removing 
5% of the reindeer clusters that were most distant from the 
line. The furthest observation after truncation was 953 m 
from the line and twice this distance defined the width of the 
surveyed area along the transect lines. Following Buckland 
et  al. (2001, p. 109), we calculated along the segments of 
total length L, the encounter rate n/L, the encounter rate 
variance (n/L) (also corresponding to Fewster et  al. 2009 
‘R3’ estimate) and evaluated the homogeneity of clusters 
position using the ratio between the expected number of 
objects detected E (n) and the sampling variance var (n). A 
ratio close to 1 gives no evidence against a Poisson distribu-
tion. We used Pearson’s correlation tests to investigate the 
correlation between the segment-based encounter rate or 
vegetation cover of adjacent segments on the same transect 
(22 total possibilities).

We estimated reindeer abundance by combining statis-
tical tools available in R ver. 3.2.2 (< www.r-project.org >) 
and the packages unmarked ver. 0.10-2 (Fiske and Chandler 
2011), Distance ver. 0.9.4 (Miller 2014) and dsm ver. 2.2.4 
(Miller et al. 2013). Model selection was done in unmarked 
because it uses a one-stage model selection procedure (i.e. 
full likelihood approach), which is required for spatially con-
fined study sites (Miller et al. 2013), as illustrated in earlier 
studies (Royle et al. 2004, Royle and Dorazio 2008, Johnson 
et al. 2010, Miller et al. 2013). In unmarked, the data have 
to be pooled into distance intervals. These were set to 1 m, 
simulating a continuous fit, because the cluster positions 
were precisely measured and we wanted to fit similar mod-
els in Distance/dsm. A hierarchical DS model implemented 

hereafter referred to as a cluster, regardless of whether it is 
an individual or a group to meet the assumption of indepen-
dent detection between observations (Buckland et al. 2001, 
Guillera-Arroita et al. 2012). The geographic position of the 
observer was recorded. We used laser binocular and com-
pass to measure the distance and angle from the observer 
to the reindeer. For practical reasons using the laser, mea-
surements were taken to the largest reindeer (e.g. a mother 
rather than her calf ), or the left-most individual of a group 
of adults. We acknowledge this as sub-optimal to measur-
ing the center animal but considered the associated potential 
positioning bias as negligible (reindeer belonging to the same 
group are close to each other and mean group size is  2) 
and evened out by following the same procedure on both 
sides of the transect line. If a reindeer individual or cluster 
was beyond the distance that the laser could measure with 
confidence (sometimes down to ∼500 m), positions were 
marked on a topographic map (1:50 000) and the exact per-
pendicular distance was subsequently read from an electronic 
map (< www.toposvalbard.no >). Even in this relatively flat  
terrain, we consider based on qualitative inference that the 
mapping method is correct due to the fine map resolution 
(e.g. every little creek is shown) and the supporting use of 
a GPS. In order to reduce error in our estimation of mean 
cluster size, the observer counted the number of individuals 
in a cluster with binoculars. If a cluster that had not been 
observed initially became apparent while measuring the dis-
tance or cluster size (i.e. because of using binoculars), it was 
not included in the observation data. We only conducted 
DS surveys when conditions were adequate in terms of good 
visibility and little wind.

Data analysis

Total counts
To estimate reindeer abundance from TC data and its 
uncertainties we considered two types of errors related to 
the observers; 1) an animal could be counted twice with a 
probability p or 2) an animal could be undetected with a 
probability q. We expected the proportion of these two error 
types to be constant across years and similar in the two study 
sites, which share the same flat and open tundra landscape 
and therefore detectability of reindeer. Let X denote the total 
number of reindeer counted twice, Y the number of unde-
tected animals, and N and n the estimated and true popula-
tion size, respectively. Animal abundance from TCs can be 
expressed as N  n  X – Y. Given that p and q are small, N 
is approximately unbiased for the true population size n. We 
have several N (i.e. repeated TCs) of the same true abun-
dance n at the different sites and years (Table 1). Note also 
that the number of individuals counted twice, never or once, 
i.e. X,Y and n – X – Y respectively, is multinomially distrib-
uted with parameters p,q, 1 – p – q, if individuals are counted 
independently. From variance and covariance formulas for 
the multinomial distribution, a straightforward calculation 
then shows that the variance of a single count, Var (N )  Var 
(n  X – Y), is proportional to the mean E(N)  E (n  X – Y) 
with a scale parameter

Φ = =
−( ) + −( ) +

+ −
Var N
E N

p p q q pq
p q

( )
( )

1 1 2
1

	 (1)
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extract mean cluster density and its standard error for the 
proportion of vegetation found across the study sites. Then, 
we transformed estimated cluster densities to cluster abun-
dances by multiplying by the respective area of each study 
site. Thirdly, we estimated cluster density using spatial den-
sity modeling methodology (Miller et al. 2013) in dsm. The 
top ranked model (Table 2) was used in the function dsm 
with segment length as an offset and the family set as quasi-
Poisson with a logarithmic link function. We verified that 
the quasi-Poisson scale parameter was close to 1, indicating 
an absence of over-dispersion. The mean cluster abundance 
and standard error were extracted from the variance propa-
gation function ‘dsm.var.prop’ (‘estimate 3’). This standard  
error obtained from dsm do not account for the variance 
related to the detection function. Following La Morgia et al. 
(2014) we thus summed the coefficient of variation related 
to the detection function (Distance) with the coefficient of 
variation related to the spatial density modeling (dsm) using 
the delta method. From these calculations, we obtained the 
mean cluster standard error. Density from equation 3, using 
the function ‘predict’, was estimated at the pixel level (spa-
tial resolution of 30  30 m) and afterward summed over 
the study site to obtain the site-specific cluster abundance 
estimate. Detection and density covariates (i.e. vegetation 
proportion) were thus required for each pixel. Because 
vegetation information from the vegetation map is binary 
(vegetated or not) at the cell level, we assigned each pixel a 
value calculated from a neighborhood consisting of a circular 
buffer zone (radius of 200 m, corresponding to an average of 
63 pixels) around each mid-point of the pixel.

Estimated cluster abundances Ai  and their correspond-
ing standard errors SEA i,

  from estimates 1, 2 and 3 were 
combined with mean expected clusters sizes Si  and their 
standard errors SES i,

  for each site i, into estimates of the 
abundance of individuals, where N A Si i i = . . Assuming 
independence between Ai  and Si  and using an exact 
formula for the variance of products (Goodman 1960) rather 
than relying on the approximate delta method, the standard 
errors of abundance of individuals are

SE A SE S SE SE SEN i i
S i

i
A i S i A i

     
,

, , , ,
. . .= + +

2 2 2 2 2 2

	 (4)

Upper and lower 95% confidence intervals of individ-
ual abundance estimates were obtained using a normal 
approximation.

in the function ‘distsamp’ uses the multinomial-Poisson 
mixture (Royle et  al. 2004, Fiske and Chandler 2011) to 
compute detection and density parameters simultaneously. 
The covariates Zi of transect i were related to the detection 
parameter si and mean density parameter li with the log  
link function and a and b as their respective parameters 
estimates (Royle et  al. 2004, Fiske and Chandler 2011, 
Sillett et al. 2012) as follows:
log σ α αi iZ( ) = +0 1 	 (2)

log λ β βi iZ( ) = +0 1 	 (3)

Different model combinations were analyzed using a half 
normal, hazard rate, exponential or uniform key for the 
detection function. No adjustment terms to the key func-
tions could be implemented in unmarked. For each key 
detection function we included either the study site, the 
vegetation cover or none of these as covariates, while for 
the density estimation we included either the study site, the 
vegetation cover, both (i.e. additive effect) or no covariate. 
To avoid over-parameterization, no more than six param-
eters were allowed per model. We retained the best model 
ranked by Akaike information criteron (AIC, Burnham and 
Anderson 2002) from the unmarked model selection and 
implemented it in Distance/dsm using the same distribu-
tion, key functions and generalized linear models as pre-
sented in Eq. 2–3 (Marques et al. 2007, Miller et al. 2013). 
Only models with ΔAIC  2.00 were presented in Table 2. 
A Freeman–Tukey goodness-of-fit statistics with 500 boot-
strap iterations (h2, Brooks et al. 2000, Sillett et al. 2012) 
evaluated the model fit to the data. We verified whether 
group size was a potential covariate influencing detection at 
the observation level in Distance, since it was not possible 
in unmarked, using the top models from Table 2. A linear 
regression investigated whether group size increased with 
increasing vegetation cover (the vegetation cover around 
each DS cluster was extracted with a 200 m buffer; see 
details below).

We compared three different approaches to estimate 
animal abundances from the DS analyses. Firstly, we esti-
mated cluster density using the top ranked model (termed 
‘estimate 1’). Secondly, we estimated density using model 
averaging, including all models with ΔAIC  2.00 (‘estimate 
2’). In both estimate 1 and 2, computed in unmarked, we 
used the function ‘predict’ (Fiske and Chandler 2011) to 

Table 2. Parameter estimates of the seven top ranked models (ΔAIC  2.00) for estimating Svalbard reindeer abundance using distance 
sampling analyses computed with the R package unmarked. These models used a continuous fit of the observed distances (1 m distance 
intervals), and the hazard rate (hz), half normal (hn) or exponential (exp) detection key function. Proportion of vegetation in transect line 
segments (veg) and/or study site (Sarsøyra or Kaffiøyra) were included as detection covariates (σ) and/or density covariates (l). Estimated 
abundance  mean abundance estimate with 95% confidence intervals (corresponding to estimate 1 in Methods); CV  coefficient of 
variation.

Model Sarsøyra Kaffiøyra

Rank Key σ l ΔAIC Estimated abundance CV Estimated abundance CV

1 hz – veg 0.00 275 [186:364] 0.16 164 [101:227] 0.20
2 hn site veg  site 0.13 194 [132:256] 0.16 183 [112:253] 0.20
3 exp veg veg 1.70 300 [208:391] 0.16 172 [88:256] 0.25
4 hz site veg 1.77 273 [185:362] 0.17 165 [102:229] 0.20
5 hz – veg  site 1.89 268 [173:364] 0.18 168 [99:237] 0.21
6 hz veg veg 1.93 272 [180:363] 0.17 157 [74:239] 0.27
7 hn site veg 1.96 234 [176:292] 0.13 145 [98:193] 0.17
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(cor  1.16, t  1.97, df  141, p  0.05). Nonetheless, 
we found no evidence in our data that cluster size influ-
enced detection probabilities (ΔAIC  4.17). Similarly, we 
found no evidence that vegetation cover influenced rein-
deer cluster size (linear regression: intercept  1.47  0.26, 
slope  0.22  0.32, p  0.50). The encounter rate had a 
low segment-based variance, 4.62  0.59 ( n L SE n L/ [ / ]± , 
Buckland et al. 2001, p. 109) and 3.68  0.61 observations 
per km in Sarsøyra and Kaffiøyra, respectively. Adjacent 
segments on a transect were not found to be correlated in 
either their segment-based encounter rate (cor  –0.16, 
t  –0.72, df  20, p  0.48) or their vegetation propor-
tion (cor  0.20, t  0.91, df  20, p  0.37). The low 
ratios between the expected number of objects detected and 
sampling variance (Sarsøyra  1.42 and Kaffiøyra  1.53) 
indicated no evidence against a homogenous Poisson distri-
bution of reindeer clusters along the segments, i.e. they could 
occur at any position. Using a higher truncation percentage 
did not decrease this ratio. Accordingly, no over-dispersion 
was found in dsm (quasi-Poisson scale parameter of 1.04).

All models with ΔAIC  2.00 included vegetation cover 
(proportion of vegetated area in each transect segment, rang-
ing from 0.13 to 0.86) as a covariate positively influencing 
the cluster density function (Table 2). None of these mod-
els showed a significant lack of fit to the data (Freeman–
Tukey goodness-of-fit statistics; 260.26  19.77  h2  
263.87  22.26 where 0.40  p  0.53, the top-ranked 
model having the best fit). The top-ranked model used the 

Total counts and distance sampling comparison
We calculated the difference between TC and DS reindeer 
abundance estimates with their 95% confidence intervals 
obtained using a normal approximation of mean N NTC DS −  

and standard error SE SETC DS
2 2+ .  Thereafter for each site  

i in 2013, the probability that TC and DS estimates were  
significantly different from each other (in a two-sided test) 
used the absolute value of the normally distributed Z-statistic:

Z
N N

SE SE
i

TC i DS i

TC i DS i

=
−
+

 , ,

, ,
2 2 	 (5)

We compared cluster density with vegetation cover intervals 
(every 10% from 0% to 100%) from both DS modeling and 
TC mapped cluster positions. In DS modeling we used the 
relationship from the top ranked model and predicted the 
cluster density using the function ‘predict’ from unmarked 
(corresponding to estimate 1). For each vegetation cover 
interval, we also summed the pixel-wise (30  30 m resolu-
tion) density estimated from spatial modeling (correspond-
ing to estimate 3). For the TC, the vegetation cover around 
each cluster was extracted with a 200 m buffer and number 
of clusters were summed in intervals (every 10% from 0% 
to 100%).

Results

Total counts

The TC precision was high in both study sites and years 
(CV ranging between 0.02 and 0.06, Table 1). The high 
re-sighting rate of the VHF-marked female reindeer (100% 
in 2000) and the low rate of double counts (1.9%, i.e. one 
out of 53 reindeer) suggested a low bias of the TCs. Virtu-
ally all the VHF-collared female reindeer that were closely 
tracked stayed within their respective study site throughout 
the summer (97.5%, only 1 out of 42 changed study site; 
19 in 1999 and 23 in 2000). This largely confirmed our 
assumption of closed populations. We expected the variance 
of the animal abundance to increase proportionally to the 
mean (Eq. 1) and estimated the dispersion parameter F to be  
0.45 [0.10:0.92] (point estimate and 95% confidence interval  

derived via the approximate c2-distribution of Φ
Φ

∧
( )n − 4 , 

 Venables and Ripley 2002, p. 210). This under-dispersion 
relative to a Poisson variance is not surprising since the vari-
ability of the total counts originate from small probabilities 
of individuals being undetected or double counted.

Distance sampling

In total, we observed 143 reindeer clusters (88 in Sarsøyra 
and 55 in Kaffiøyra) during the DS surveys. There was a 
slight increase in the number of clusters detected between 
approximately 90 m and 170 m from the transect lines  
(Fig. 2). The mean cluster size was 1.68  0.10 (mean  SE) 
and 1.58  0.11 in Sarsøyra and Kaffiøyra, respectively. The 
largest group had five animals and the correlation between 
group size and detected distances, if considered indepen-
dent, was at the critical level to be statistically significant 

Figure 2. Detection probability function based on line transect dis-
tance sampling of Svalbard reindeer. The best model was fitted at a 
continuous scale for observed distances and included a hazard rate 
key detection function with no covariate. Observations of reindeer 
clusters are illustrated by dots along the curve. The rescaled 
histogram was plotted at 30 m distance intervals for ease of the 
visual illustration.
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underestimated reindeer abundance at low and high vegeta-
tion cover, respectively (Fig. 3).

Discussion

In the present study, we used total count (TC) and dis-
tance sampling (DS) line transect data from two isolated 
sub-populations of high-arctic Svalbard reindeer to com-
pare methodologies of abundance estimation. We evalu-
ated some of the potential sources of error and imprecision 
in both methodologies. We obtained unbiased and precise  
TC abundance estimates (Table 1) from the two reindeer 
sub-populations that inhabit a flat and open tundra land-
scape. These provided ‘known’ population sizes and were 
used as a reference for DS abundance estimates. We found 
no statistically significant differences between the DS and 
the TC abundance estimates, but DS estimates were consid-
erably less precise (Table 3). The vegetation cover proved an 
important covariate for estimating reindeer density spatially 
(Fig. 3, 4).

Biased abundance estimates can result from various 
reasons, including violation of the major assumptions of 
the DS method, selection of statistical models for density 
estimation, or software limitations. In this study, the reindeer 
DS abundance estimates were not statistically different 
from the respective TC estimates. However, although not 
significant, our DS estimates tended to be consistently larger 
than TC estimates at both study sites. If this tendency is 
reflecting a true difference, the lack of a significant difference 
may be due to the large variance of DS estimates (Eq. 5). 

hazard rate key detection function, with no covariate or  
factor influencing detection probability. As expected, trans-
ferring the best model from unmarked (with 1 m distance 
intervals) to Distance gave a similar detection probability  
(a0 from equation 2 is 5.77  0.27 in unmarked and 
5.77  0.36 in Distance) and density parameter estimate  
(b1 from equation 2 is 2.02  0.53 in unmarked and 
2.02  0.54 in Distance). The vegetation cover along the 
transect lines (69.6% in Sarsøyra and 54.1% in Kaffiøyra) 
was comparable to the total vegetation cover of the study 
sites (66.1% in Sarsøyra and 50.5% in Kaffiøyra). The preci-
sions of the abundance estimates from all three DS estimates 
were ranging between CV  0.16–0.26 (Table 3).

Total counts and distance sampling comparison

The mean reindeer abundance estimated from the TCs in 
both study sites were always within the DS 95% confi-
dence intervals from the top ranked models (ΔAIC  2.00;  
Table 2). Accordingly, from the Z-statistics (Eq. 5, Table 3), 
none of the three DS abundance estimates differed signifi-
cantly from the TC estimates in either of the sites. However, 
the precision of DS estimates was considerably lower than 
from the TC estimates, with the upper limit of the confi-
dence interval close to twice the mean of TCs abundance 
estimates, Table 1, 3).

The importance of vegetation cover for spatial cluster 
density modeling was also supported by reindeer cluster 
positions from repeated TCs (Fig. 3). Nonetheless, based 
on the TC cluster positions this relationship appeared 
non-linear, with a sharp increase in reindeer abundance 
when more than about half of the ground was vegetated. 
Overall, the estimated density in the DS modeling tracked 
this apparent non-linearity well, yet slightly over- and 

Table 3. Svalbard reindeer abundance in the two study sites (Sarsøyra 
and Kaffiøyra) estimated using distance sampling. The estimated 
reindeer abundances are shown according to the three estimation 
methods (see Methods for details). Estimate 1  the estimated abun-
dance using the top ranked model, and corresponding proportional 
cover of vegetation across the study site (unmarked). Estimate 2  the 
estimated abundance using model averaging (models with 
ΔAIC  2.00) and corresponding to the proportion of vegetation 
across the study site (unmarked). Estimate 3  the estimated abun-
dance using the top ranked model and corresponding sum of densi-
ties projected for each pixel across the study site (30  30 m 
resolution, pixels have a vegetation proportion value, see Methods, 
Distance/dsm). CV  coefficient of variation, Z  the Z-statistic (see 
Methods), p  p-value from the Z-statistic. Difference  the differ-
ence between total counts and the respective distance sampling 
abundance estimates. Numbers in brackets are 95% confidence 
intervals.

Site Estimate 1 Estimate 2 Estimate 3

Sarsøyra abundance 275 [186:364] 253 [147:360] 313 [156:470]
CV  0.16 CV  0.22 CV  0.26

Z  1.19 Z  0.59 Z  1.15
p  0.24 p  0.55 p  0.25

difference 54 [–35:143] 32 [–75:140] 92 [–65:250]
Kaffiøyra abundance 164 [101:227] 167 [96:239] 201 [101:250]

CV  0.20 CV  0.22 CV  0.26
Z  0.61 Z  0.63 Z  1.10
p  0.54 p  0.53 p  0.27

difference 20[–44:84] 23[–50:97] 57[–44:159]
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Figure 3. Histogram of the frequency of Svalbard reindeer clusters 
observed during total counts (left y-axis), pooled across study sites, 
plotted in relation to the proportion of vegetation covered area 
within a 200 m buffer zone around each reindeer cluster. Reindeer 
cluster observations were mapped during four repeated total counts 
(TC) in Sarsøyra and one total count in Kaffiøyra in 2013 (see 
Table 1). Estimated reindeer cluster density (right y-axis, solid 
curve) and associated standard error (dashed curves) in relation to 
vegetation cover, based on the selected model obtained from the R 
package unmarked. Red lines on the x-axis show the vegetation 
cover measured of each segment.
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with high animal density ( 100 animals km–2 in Porteus 
et  al. 2011 for sheep and Glass et  al. 2015 for kangaroo 
Macropus giganteus). The precision of our three DS abun-
dance estimates was high (CV  16–26%, Table 3) relative 
to the precision levels in other studies from the wild. How-
ever, the upper confidence interval of around 400 reindeer in 
Sarsøyra represents a density of ∼10 reindeer km–2, which is 
much higher than reported densities from more productive 
areas in Svalbard (∼6 reindeer km–2 in Adventdalen, Tyler 
et  al. 2008). A larger sample size (i.e. more transect lines 
and a larger number of observations) would likely increase 
model quality by reducing the confidence intervals and  
thus excluded such biologically unreasonable abundances 
(La Morgia et al. 2015).

Habitat structure and heterogeneity are also impor-
tant potential sources of uncertainty (Pedersen et al. 2012, 
Sillett et  al. 2012), yet the habitat structure was well cap-
tured overall by our DS study design, with only a negligible 
3.5% difference in vegetation cover within the transects areas 
versus the total study site areas. Thereafter, a design-based 
method extrapolating the density from the transects areas to 
the whole study area would give comparable results to esti-
mate 1 (predicting density to the vegetation cover of the total 
study site). While Miller et al. (2013) recommend a larger 
grid cell size to match the segment scale, our smaller grid 
cell size (i.e. 200 m circular buffer) captures changes in rein-
deer density in response to covariate values. Both estimated 
DS cluster density (from unmarked, using the segment scale) 
and the cluster number from TC (using the 200 m circular 
buffer scale) clearly responded to the changes in covariate 
values by a sharp increase at about half of the ground being 
vegetated (Fig. 3). The precision of the three different rein-
deer density estimates (i.e. using unmarked or Distance) was 
fairly similar, while estimating reindeer density at a small 
spatial scale (estimate 3, spatial resolution of 30  30 m 
in Distance) tended to give the largest and more imprecise 
abundance estimates (Table 3). One reason for this could be 
that although overall similar, the estimated vegetation cover 
effect on density deviated slightly from the actual relation-
ship (Fig. 3) at low and high vegetation cover, as visualized 
by the animal positions from TC. Greater flexibility in the 
model building within a single analytical tool, could select 
a more precise model. A one-step modeling approach tool 
that enabled spatial density modeling (available in e.g. R 
package DSpat, Johnson et al. 2010, but no transect overlap  
is possible) with adjustment parameters for the detection  
key functions and covariates at the individual observation 
level (only available in Distance) would be ideal for small 
study areas.

Clearly, even with our relatively large sample sizes 
(recommended minimum of 60–80 observations, Buckland 
et al. 2001) and the associated DS uncertainty level, we may 
not be able to relate our DS abundance estimates to envi-
ronmental drivers of annual population size fluctuations. By 
contrast, using TC time-series from these sub-populations, 
drivers like ‘rain-on-snow’ events and density dependence, 
have previously determined population growth rates (Kohler 
and Aanes 2004, Hansen et al. 2011). Hence, a mechanis-
tic understanding of the system relating the state variables’ 
responses to the environment requires a year to year unbiased 
and precise estimation of abundances (Yoccoz et  al. 2001) 

Porteus et al. (2011) showed that attraction of sheep toward 
the observer inflated detected clusters around 100 m, result-
ing in underestimation of the detection probability and 
positively biased density estimation. Similarly, our histo-
gram of detected distances close to the line indicated a hump 
between 90m and 170 m (Fig. 2), and the hump’s effect on 
the hazard rate function could have led to an underestimated 
detection probability which further could overestimate rein-
deer abundance slightly (Fewster et al. 2008, Marques et al. 
2010). Nonetheless, reindeer movement towards the line 
is not likely because of lack of Svalbard reindeer reaction 
towards human presence (Reimers et al. 2011, Hansen and 
Aanes 2015). We suggest this hump could have occurred by 
chance (see also a study on robin in Buckland et al. 2015,  
p. 71). Another explanation for the tendency of the DS 
estimates to be larger than the TCs could come from bias in 
the TCs themselves, but we consider this very unlikely, given 
the information from marked animals on false positives and 
negatives.

Other studies comparing TC and DS line transect 
performance have been conducted in ecosystems with more 
environmental complexity, for instance at sea (Williams and 
Thomas 2009 killer whales Orcinus orca), in forests (White 
et al. 1989 mule deer Odocoileus hemionus; Wegge and Storaas 
2009 Nepal’s ungulates) or in human disturbed landscapes 

Figure 4. Map of the estimated reindeer abundance for each  
30  30 m pixel (900 m2, estimate 3; see Methods) in the two study 
sites, Sarsøyra (40 km2, upper figure) and Kaffiøyra (35 km2,  
lower figure), obtained from the R package Distance/dsm. Red 
horizontal lines show the distance sampling transect lines, the 
dotted lines show the 5% data truncation distance at 953 m and 
the black dots the positions of reindeer clusters from the first survey 
in both study sites.
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costs, the monitoring of our study area is approximately 
twice as expensive using TC versus DS methods, mainly 
due to the difference in number of people involved. This 
may be an important argument when choosing methods for 
long-term population monitoring at large spatial scales (La 
Morgia et al. 2015).

When choosing DS methodology, animal observation 
sample size and relevant habitat covariate information should 
always be maximized to obtain unbiased detection curves 
and accurate habitat structure effects (Miller et  al. 2013, 
Buckland et al. 2015). Underestimation of detection prob-
ability and overestimation of animal density, even for a one-
time state assessment, can have fundamental implications 
in management and conservation of wildlife populations 
(Thompson et  al. 1998). To prevent this, we recommend 
the further development of easily accessible tools, prefer-
ably within a single R package. Such developments should 
simultaneously allow for: 1) a one-step modeling approach 
for relatively small study areas (i.e. the area covered is large 
relative to the entire study area); 2) modeling with data on 
a continuous scale; 3) adjustment parameters for the detec-
tion key functions; 4) detection and density covariates at the 
individual observation level; and 5) spatial density modeling 
tools that permit transect lines to overlap.
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