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Moose calf detection probabilities: quantification and evaluation of 
a ground-based survey technique

Eric J. Bergman, Forest P. Hayes, Paul M. Lukacs and Chad J. Bishop

E. J. Bergman (https://orcid.org/0000-0003-4298-0732) ✉ (eric.bergman@state.co.us), Mammals Research Group, Colorado Parks and Wildlife, 
Fort Collins, CO 80526, USA. – F. P. Hayes, P. M. Lukacs and C. J. Bishop, Wildlife Biology Program, Dept of Ecosystem and Conservation 
Sciences, W.A. Franke College of Forestry and Conservation, Univ. of Montana, Missoula, MT, USA.

Survey data improve population management, yet those data often have associated bias. We quantified one source of bias 
in moose survey data (observer detection probability, p), by using repeated ground-observations of calves-at-heel of radio-
collared moose in Colorado, USA. Detection probabilities, which varied both spatially and temporally, were estimated 
using an occupancy-modelling framework. We provide an efficient offset for modelled calf-at-heel occupancy (ψ) estimates 
that accommodates summer calf mortality. Detection probabilities were most efficiently modelled with seasonal variation, 
with the lowest probability of detecting calves-at-heel occurring during parturition (i.e. May) and later autumn periods 
(after August). Our most efficiently modelled detection probability estimate for summer was 0.80 (SE = 0.05). During 
the four years of this study, ψ estimates ranged from 0.54–0.84 (SE = 0.08–0.11). Accounting for 91.7% monthly calf 
survival corrected ψ estimates downward (ψ = 0.42–0.65). Our results suggest that repeated ground-based observations of 
individual cow moose, during summer months, can be can a cost-effective strategy for estimating a productivity parameter 
for moose. Ground survey results can be further improved by accounting for calf mortality.

Keywords: Alces alces, Colorado, detection probability, ground-surveys, moose, occupancy models

Management of wildlife populations is typically a dynamic 
process. As an example, harvest management of many large 
ungulate species often requires biologists to inform decision-
makers about how many hunting licenses a herd can sup-
port. Under these scenarios, population monitoring data are 
pivotal. For many large ungulates, these data are collected 
via aerial and ground surveys. Yet survey data have associ-
ated bias (Williams et al. 2001, White 2005). As an example, 
even when available for observation, a proportion of animals 
remain undetected. This form of nonresponse error, also 
referred to as a detection probability, introduces a consistent 
negative influence on observation data (Thompson  et  al. 
1998, White 2005). While nonresponse error is most often 
associated with human subjects who choose not to return 
a survey, animals that go undetected during a survey have 
functionally made the same ‘choice’ and are treated in the 
same manner. Detection probability estimates capture the 
bias associated with the failure to observe some animals. 
When properly estimated, detection probabilities can be 

used to inflate raw count data, reducing negative bias associ-
ated with nonresponse error.

Investigations of detection error have occurred for 
multiple species and for multiple survey techniques. For 
example, mark–resight methods quantify and extrapolate 
resighting probabilities of marked animals to correct for 
unobserved animals within a population (Williams  et  al. 
2001, White 2005). These techniques have been applied 
to aerial surveys for mule deer Odocoileus hemionus (Berg-
man  et  al. 2014), moose Alces alces (Bowden and Kufeld 
1995), brown bears Ursus arctos and black bears Ursus 
americanus (Miller et al. 1997), but also to ground surveys 
for bighorn sheep Ovis canadensis (McClintock et al. 2006, 
Johnson et al. 2010). Distance sampling approaches model 
and correct for the decay in detection probability as distances 
between observers and animals increase (Buckland  et  al. 
2008). While less common, distance sampling has also 
been used for moose (Oyster et al. 2018) and white-tailed 
deer Odocoileus virgianus (Anderson  et  al. 2013). More 
commonly, aerial sightability models quantify the under-
estimation of raw count data due to habitat type, animal 
behavior, seasonal conditions and observer platform, and 
provide a numerical inflation to correct for bias. Examples 
of sightability models can be found for elk (Samuel et al. 
1987, Cogan and Diefenbach 1998, Walsh  et  al. 2011),  
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moose (Anderson and Lindzey 1996, Giudice  et  al. 
2011), mule deer (Bartmann et al. 1986, Zabransky et al. 
2016), mountain goats Oreamnos americanus (Poole 2007, 
Rice  et  al. 2009) and bighorn sheep (Bodie  et  al. 1995, 
Udevitz et al. 2006). Of note, the majority of past research 
on this topic for large ungulates has focused on aerial sur-
veys. While ground surveys are less common, often due 
to high labor costs and landscape accessibility constraints, 
they provide a cost effective approach to collecting data. In 
several jurisdictions, ground-based observations of moose 
by hunters have been highlighted as a useful management 
tool (Ericsson and Wallin 1999, Solberg and Sæther 1999, 
Boyce and Corrigan 2017).

Prior to the 1970s, moose presence in Colorado was 
sporadic. However, during the late 1970s and early 1980s 
Colorado Parks and Wildlife (CPW) permanently estab-
lished moose through translocations from neighboring states 
(Nowlin et  al. 1979). Since then, the total moose popula-
tion has grown to nearly 3000 animals (Colorado Parks and 
Wildlife, unpubl.). However, relative to other large ungulate 
species such as elk, deer and pronghorn Antilocapra ameri-
canus, moose are scarce in Colorado, and thus, resources for 
aerial moose population monitoring are limited. Likewise, 
most of Colorado’s moose herds are located in areas with 
dense, closed-canopy forests, mountainous terrain and at 
high elevations, also limiting the feasibility and utility of aer-
ial surveys. In spite of these limitations but directly related to 
the moose population growth during the past three decades, 
CPW’s biologists are confronted with the need for reli-
able population data to facilitate herd management. Under 
these circumstances, data from ground-based surveys and  
opportunistic observations have the potential to be cost-
effective and useful.

A moose population parameter of interest to CPW’s biol-
ogists is the young (calf )/adult female (cow) ratio. Young/
adult female ratios change throughout the year as a birth 
pulse pushes the ratio to it maximum and then decline as 
calves die. These ratios, when estimated as a parameter, can 
be used in population modelling (White and Lubow 2002), 
but also as indicators of trends within recruitment (Berg-
man et al. 2011). Yet it is important to consider what point 
in time the ratio represents to properly incorporate it in a 
population model. Moreover, uncorrected observations to 
estimate young/adult female ratios are biased. Thus, our 
objective was to provide an estimation of the ground-based 
detection probability of moose calves-at-heel, with the goal 
of providing biologists with a numerical correction that will 
minimize bias and improve the utility of field surveys and 
observations.

Material and methods

Study area

Our research occurred in three study areas, two of which were 
located in the northern and central mountains of Colorado, 
whereas the third was located in the San Juan Mountains 
of southwest Colorado (Fig. 1). The first of the northern 
study areas, North Park, was located in Jackson County, 
near the town of Walden. North Park was the site of moose 
translocation efforts during the late 1970s, and it encom-
passes the most longstanding moose herd in Colorado. The 
North Park study area was a wide (14–46 km), high elevation  
valley (2400–2750 m) that was comprised of rolling sage-
brush Artemesia spp. hills mixed with irrigated agricultural 

Figure 1. Map of Colorado, USA depicting three moose research study areas (gray filled polygons, with underlined names) in relation to 
nearby and major communities. Research study areas depict areas where moose cows and calves were observed in order to estimate calf-at-
heel detection probabilities between 2015 and 2018. Black continuous lines throughout the map depict Interstate roadways to provide 
spatial reference.
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fields. North Park had many small rivers and streams which 
were closely surrounded by willow Salix spp. communities, 
as well as a diversity of native grasses and sedges. Moving 
up in elevation (2750–3660 m), away from the North Park 
valley floor, sagebrush and agricultural communities transi-
tioned to spruce–fir, Picea englemanni and Abies lasiocarpa, 
and aspen Populus tremuloides forests. The highest portions 
of the North Park study area occurred above tree line and fell 
within the alpine tundra vegetation zone.

The second study area, also located in northern Colo-
rado, was along the Laramie River. The Laramie River study 
area was approximately 40 km to the northeast of the North 
Park study area, but separated by the Rawah Mountains 
(3200–3840 m). Moose were translocated to Laramie River 
during the early 1980s and consistently occupied the study 
area since then. The Laramie River study area was comprised 
of a narrow valley floor (3.0–8.5 km wide) that ranged from 
2470 to 2800 m in elevation. Lower elevations were veg-
etated with small willow stands along the river and stream 
corridors, but also spruce–fir forests. Sagebrush and aspen 
also occurred in the Laramie River study area, but at much 
lower frequencies and densities than North Park. Higher 
elevation (2800–3660 m) portions of the Laramie River area 
were comprised of spruce–fir, but also alpine tundra above 
tree line.

The third study area was located in the northern San Juan 
Mountains. Moose were translocated to the San Juan Moun-
tains study area during the early 1990s and consistently 
occupied that area since then. The San Juan Mountains 
study area mirrored the Laramie River with narrow valley 
bottoms (0.5–1.5 km wide), although elevations ranged 
from 2750 to 3130 m. Moose used spruce–fir forests, willow 
and alpine tundra habitats in the San Juan Mountains, but 
at higher elevations (3350–4020 m) than what was available 
in the other two study areas.

Moose were actively managed via limited bull and cow 
hunting opportunities in all study areas. Likewise, preda-
tor assemblages were consistent among study areas. Black 
bears, mountain lions Puma concolor, and coyotes Canis 
latrans were present in all three study areas, whereas wolves 
Canis lupus and grizzly bears Ursus arctos were absent. It was 
believed that black bears and mountain lions predated upon 
moose, although this predation was likely opportunistic as 
moose densities were much lower than the densities for elk 
and mule deer, which were the preferred prey for both preda-
tors. Relative to other jurisdictions, particularly in the Rocky 
Mountains, Alaska, western Canada and northern Europe, 
the predation pressure on moose in Colorado was minimal.

Field methods

Between 20 December and 27 January of each winter (2015–
2018), we captured adult (≥2 years old) female moose via 
helicopter darting. Moose were sedated using one of three 
different drug combinations: 1) BAM (54.6 mg of butorpha-
nol, 18.2 mg of azaperone and 21.8 mg of medetomidine) 
in combination with ketamine (200 mg), 2) carfentanil 
(3 mg) in combination with xylazine (100 mg) or 3) thiafen-
tanil (10 mg) in combination with xylazine (25 mg). After 
handling, capture drugs were antagonized with naltrexone 
(100 mg, antagonist for carfentil and thiafentenil), tolazo-

line (500 mg, antagonist for azaperone and xylazine) and ati-
pamezole (100–150 mg, antagonist for medetomidine and 
xylazine). Once sedated, moose were blindfolded to mini-
mize stress. Moose also received oxygen, via nasal cannula, to 
minimize risks of adult and fetal hypoxia. Moose were subse-
quently fitted with satellite and GPS equipped VHF radio-
collars (Vectronics Aerospace GmbH, Berlin, Germany 
model: Vertex Plus, and Advanced Telemetry Systems, Isanti, 
MN, USA model: G5-2D), as well as uniquely numbered 
eartags. At the time of capture, blood samples were collected 
to allow for subsequent determination of pregnancy status 
via pregnancy specific protein B (PSPB, Wood et al. 1986).

Following the first year of capture, some previously cap-
tured moose were recaptured, but only on a random basis. 
Our efforts to maintain a random sample of moose each 
year led to scenarios in which the pregnancy status of some 
radio-collared moose was unknown. As an example, an 
individual moose only captured during year 1 of the study 
had known pregnancy status for that year, but unknown 
pregnancy status for subsequent years. These moose, with 
unknown pregnancy status, continued to wear satellite col-
lars and remained available for summer field observation. 
Beginning in mid-May of each year, we initiated ground 
observations of all collared moose. Typically, one observer 
completed ground observations by radio-tracking to col-
lared moose to document presence or absence of newborn 
calves. Last known GPS locations and VHF signals expe-
dited ground observation. When a single observer failed to 
gain an observation of a moose after >3 repeated efforts, we 
utilized a two-observer approach. During these scenarios, 
the second observer was positioned along the exit route that 
a cow moose was expected to take, and the first observer 
radio-tracked to the cow moose in the same manner as a 
single observer approach. A cow moose and the presence or 
absence of a calf was recorded when the cow’s entire body 
and the surrounding 1–2 m area were observed.

Repeated observations were made of study animals begin-
ning in mid-May and continued through the end of August. 
Moose were initially prioritized for observation based on 
whether or not they had been captured the previous winter 
(i.e. moose with known pregnancy status were a higher pri-
ority for observation). However, once annual summer obser-
vations began and moose had been observed at least once, 
priority was then given to animals based on timing of most 
recent observation (i.e. individual moose observed most 
recently were lowest priority for upcoming observations, and 
animals who had not been recently observed were a higher 
priority). In addition to observations that occurred as part of 
the formal study process, CPW biologists and hunters made 
opportunistic observations during autumn months. Obser-
vations made by hunters occurred when study animals were 
harvested during hunting seasons. Opportunistic observa-
tions were only included in our analyses when individual 
identification of moose (possible due to unique ear tags)  
was provided.

Analytical methods

Moose calf detection probability was estimated using an 
occupancy-modelling framework. Whereas occupancy 
models commonly treat geographic areas as sites, we treated  
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individual cow moose during a given year as a site. We mod-
elled the presence or absence of a calf with each cow as occu-
pancy (i.e. cow moose observed with at least one calf were 
occupied, cow moose observed without calves were unoc-
cupied). Some individual cow moose were observed during 
multiple years of this study, in which case each animal by 
year combination was treated as a unique site. Observation 
data were condensed by month (May, June, July, August, 
Autumn) for each animal by year combination. For these 
‘month’ models, estimation of p for each month was inde-
pendent of observations made during any other month. We 
also included an ‘effort’ covariate, which was the numerical 
count of observations for individual moose during a given 
month, which allowed us to evaluate the effect of field effort 
on detection probabilities. Likewise, observations were con-
densed such that for each month, study animals were occu-
pied (≥1 calf observed), unoccupied (no calves observed) or 
unknown. While a potential source of bias, observational 
data for the Shiras subspecies of moose in Colorado (Colo-
rado Parks and Wildlife, this study), Utah (K. Hersey, Utah 
Division of Wildlife Resources, unpubl.) and Montana (N. 
DeCesare, Montana Fish, Wildlife and Parks, unpubl.) sug-
gest that twinning rates are consistently low and often range 
between 5% and 10%.

We conducted occupancy analyses, using a maximum 
likelihood framework, in Program MARK (White and 
Burnham 1999). Occupancy models were structured to esti-
mate detection probability (p) as well as occupancy (ψ). In 
this scenario, estimates of ψ were summer calf-at-heel ratio 
estimates. Models were compared using Akaike’s informa-
tion criterion (AICc) that was corrected for small sample size 
(Burnham and Anderson 2002). Our global model allowed 
p to vary by study area and month (May, June, July, August 
and Autumn). Additionally, for moose that were captured the 
previous winter, our global model treated pregnancy status 
as an individual covariate. Observer effort was also included 
in our global model. Models that included temporal, spatial 
variation and pregnancy status were additive in structure. 
We did not evaluate models with multiplicative interactions 
(i.e. which would have allowed p to vary by study area and 
year). Simpler models that condensed or removed tempo-
ral and geographical effects for p were also included in the 
model set. These simpler models included a seasonal model 
that generated three estimates for p (parturition, summer 
and fall), as well as a constant model that estimated a single 
value for p. For all models, year was treated as a group, which 
allowed for four calf-at-heel ratio ψ estimates.

Births and deaths of animals violated our model assump-
tion of population closure. The detection probability esti-
mated in occupancy models is the intersection of birth, 
survival and detection, and subsequently, ψ represented the 
proportion of adult females that gave birth. To obtain an 
estimate of ψ later in the summer, ψ can be multiplied by 
survival for the time from the beginning of the survey until 
the time of interest. For example, a young/adult female ratio 
three months after the start of the survey would be

Y Y3month = S 3   

where S is monthly survival.

Results

We captured and observed 98 unique individual moose as 
part of this study. When spread among the four years of this 
study, these 98 individuals allowed for 156 unique animal 
by year combinations, and a total of 247 ground observa-
tions. The mean number of ground observations per cow 
moose during the study was 1.6 (SD = 0.7), and the maxi-
mum number of observations of a single individual was 4. 
The majority of observations occurred during June, whereas 
the number of observations that occurred during May, July 
and August were more similar (Table 1). The fewest number 
of observations occurred during autumn (Table 1). Obser-
vations made of moose while they were moving tended to 
be short in duration, but effective for observing calves. In 
these situations, calves were typically directly behind cows 
(1–2 m) and easily observed. Observations of docile (bedded 
or feeding) cow moose ranged from 2 to 20 min in duration 
and were also effective at observing calves. Observations of 
docile cows ended when moose either foraged or stood and 
walked out of view.

We compared 15 models (Table 2). The single best 
model, based on AICc, allowed p to vary by season, but did 
not include study area or pregnancy status. Models that 
allowed p to vary by month were not as well supported as 
seasonal models, but they consistently outperformed models 
with a constant p (Table 2). This pattern strongly suggests 
that p does indeed vary through time. More specifically, esti-
mates of p during the month of May, the primary parturi-
tion month, were consistently lower (Fig. 2, 3). Estimates 
of p ranged from 0.37 to 0.41 (SE = 0.09–0.14). However, 
detection probability estimates of moose calves during sum-
mer months were consistently high. Monthly estimates of 
p ranged from 0.77 to 0.88 (SE range 0.07–0.14) between 
June and August. Our AICc best model estimated a single 
summer p of 0.80 (SE = 0.05). Similar to the parturition 
period, detection probability of moose calves during the fall 
was lower than during summer months (p = 0.71, SE = 0.13).

Regardless of how temporal variation was structured (sea-
sonal versus monthly), incorporating spatial variation within 
p (i.e. study area differences) consistently reduced model 
support. Similarly, there was little support for pregnancy 
status in our models (i.e. knowing the pregnancy status of 
a cow moose did not intrinsically improve the detection 
probability of a calf-at-heel). Including observer effort (i.e. 
the number of observations per month) as a covariate for 
estimating p also did not increase support for models. In 
nearly all cases, the 95% confidence intervals for beta esti-
mates included 0. While the beta estimate for observer effort 

Table 1. Numerical summary of visual observations made of col-
lared adult female moose from Colorado. Categorized by month 
and year, these data were used to estimate detection probabilities (p) 
and calf-at-heel estimates (ψ) using occupancy models.

May June July August Fall Total

2015 11 38 13 7 1 70
2016 13 18 16 8 13 68
2017 8 16 8 10 1 43
2018 16 15 12 16 7 66
Total 48 87 49 41 22 247
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during July was positive (β = 0.32), suggesting that more 
observations increased detection probability, the variance 
surrounding this estimate limited the inference that could 
be drawn from that result (95% confidence interval range: 
–0.53 to 1.17).

Calf-at-heel ratios decline throughout the summer as 
calves die at a higher rate than adult females. The result is 
a decay curve as a function of ψ at the start of the survey, 
and time. For a monthly survival probability of 0.90 and 
ψ = 0.80, the calf-at-heel ratio after three months would be 
0.63 (Fig. 4). Our models generated four estimates for ψ, 
which aligned with the four years of this study (2015–2018). 

Given this, we computed model averaged estimates for ψ, 
weighted by model weights. Estimation of ψ on an annual 
basis did capture some of the biological variability inher-
ent within that parameter. During 2015 and 2016, calf-
at-heel ratios were 0.81 (SE = 0.10) and 0.84 (SE = 0.08), 
respectively, before dropping to 0.54 (SE = 0.11) during 
2017 (Fig. 5). This ratio increased to 0.68 (SE = 0.09) dur-
ing the final year of the study (Fig. 5). Application of the 
monthly survival correction using a literature-based sum-
mer monthly survival estimate of 0.917 (Musante  et  al. 
2010) shifted our range of estimates for ψ from 0.54–0.84 
down to 0.42–0.65.

Table 2. Comparison of different models used to estimate detection probabilities of moose calves-at-heel of adult female moose from 2015 
to 2018. Models are ranked according to increasing values of Akaike’s information criterion (ΔAICc) which was corrected for small sample 
size. Only models within <3 ΔAICc are presented in model results. Model output also includes relative model weights (wi) and the number 
of parameters estimated for each model (k).

Model1 ΔAICc wi Log(L) k

p (season)2 03 0.31 −150.95 7
p (season + effort + pregnancy status) 0.58 0.24 −144.34 13
p (season + effort) 2.34 0.10 −146.41 12
p (season + study unit + pregnancy status) 2.65 0.08 −148.89 10
p (season + effort + study unit + pregnancy status) 2.93 0.07 −143.08 15
p (season + study unit) 3.39 0.06 −150.41 9
p (month) 3.69 0.05 −150.56 9
p (month + effort + study unit + pregnancy status) 4.42 0.03 −142.59 16
p (month + effort) 6.39 0.01 −146.04 14
p (season + effort + study unit) 6.64 0.01 −146.16 14
p (month + study unit + pregnancy status) 6.83 0.01 −148.65 12
p (month + study unit) 7.59 0.01 −150.21 11
p (constant) 11.64 0.00 −158.95 5
p (study unit) 14.62 0.00 −158.26 7
p (study unit + pregnancy status) 15.47 0.00 −157.58 8

1 Variation in model structure was restricted to detection probability (p). All models also estimated annual occupancy (ψ), which was the 
probability of a cow moose having at least one calf-at-heel. Occupancy estimates accounted for four estimated parameters (k) in each model. 
The effort covariate accounted for five additional parameters. The season covariate accounted for three parameters, whereas month accounted 
for five parameters. Study unit accounted for three parameters and pregnancy status accounted for one parameter.
2 The top performing model was a post hoc exploratory model, evaluated due to its management implications.
3 AICc for the best model was 316.66.

Figure 2. Monthly estimates of moose calf-at-heel detection probabilities (p) from Colorado. Maximum likelihood detection probabilities 
and 95% confidence intervals, reflected by solid gray bars and dashed black lines, respectively, were estimated using an occupancy modelling 
framework.
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Discussion

As expected, nonresponse error occurred during the collec-
tion of our moose calf-at-heel data. However, the bias associ-
ated with that error was quantifiable and easily incorporated 
into calf-at-heel ratio estimates. As noted, we documented 
strong temporal variation in p. The low p estimates during 
May were not surprising. During the parturition period, 
pregnant moose who were yet to give birth were intrinsically 
observed without a calf-at-heel. Without the use of vagi-
nal implant transmitters that would have alerted observers 
to the exact timing of birth, it would be difficult to quan-
titatively disentangle the visual similarity between a cow 

carrying a fetus versus a cow that had given birth but the 
neonate was well hidden. Lower p estimates also occurred 
after August (autumn observations). Detection probabili-
ties of moose calves during this period were expected to be 
lower for two reasons. First, we suspect moose calves became 
behaviorally more independent from their dams during 
September, as weaning occurred (Franzmann and Schwartz 
2007, Severud et al. 2019). Thus, during autumn, the spa-
tial separation between cows and calves was higher, which 
reduced the detection probability of calves. Secondly, and 
further reducing detection probabilities of calves during 
autumn was the reality that calf mortality occurred between 
May and August of each year. Cows who lost calves dur-

Figure 3. Seasonal estimates of moose calf-at-heel detection probabilities (p) from Colorado. Maximum likelihood detection probabilities 
and 95% confidence intervals, reflected by solid gray bars and dashed black lines, respectively, were estimated using an occupancy modelling 
framework. A single, summer (June, July and August) detection probability embodies the most parsimonious approach to estimating sum-
mer calf-at-heel ratio estimates for moose population monitoring and management purposes.

Figure 4. Predicted trends in summer moose calf-at-heel ratio estimates (ψ), as predicted by occupancy models. White bars reflect modelled 
ψ estimates, a maximum value, yet calf-at-heel ratios decline throughout summer as moose calves die at a higher rate than adult females. 
Gray bars reflect the decay in ψ that would be expected from 90% monthly survival in moose calves.
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ing the summer were observed without a calf-at-heel during 
autumn. Similar to the case with pregnant cows during May, 
our models for p could not distinguish between calves that 
were undetected due to hiding versus those that were not 
observed because they were no longer living.

The lack of support for spatial variation in p was likely 
due to the large degree of habitat similarity among study 
areas. While the broad-scale variation among our study areas 
was evident, the fine-scale habitat similarities resulted in no 
discernible difference in p as observers attained visuals of 
cows and calves. Similarly, there was no apparent effect on 
observer’s ability to detect calves if they knew a cow had been 
pregnant the preceding winter. Likewise, accounting for the 
number of observer visits each month (i.e. effort) did not 
measurably improve detection probability. While surprising, 
these results were likely driven by the fact that p was quite 
high for moose in general.

Prior to our research, parturition and summer calf-at-heel 
data had not been collected in Colorado. Our approach pro-
vided a useful tool for biologists, and it provided estimates of 
a reproductive parameter. We considered ψ, the occupancy 
estimate, to be synonymous with parturition, and early sum-
mer recruitment. From a harvest management standpoint, 
estimating recruitment, even during summer, can be useful. 
The survival adjustment presented provides a method for 
estimating recruitment at the 6 or 9 month periods, which 
would be even more useful. Our modelled ψ estimates, 
which ranged from 0.54 to 0.84 demonstrated how popula-
tion parameters can vary (Fig. 5). Long-term research results 
from Alaska exemplify the utility of reproductive param-
eter data (Boertje  et  al. 2019). Timing of parturition, age 
of first reproduction and recruitment of young have been 
linked to nutrition (Keech et al. 2000, Ruprecht et al. 2016, 
Boertje  et  al. 2019), yet data collected to estimate those 
parameters need to be corrected for potential bias. Our 

results provide a preliminary correction to one method for 
collecting those data. As an example, earlier research used 
methods similar to ours, but provided no correction for 
detection probability (Ruprecht et al. 2016).

In the future, to be fully useful for biologists during pop-
ulation and harvest management processes, estimation of ψ 
should occur not only on an annual basis, but also at the 
herd level. In particular, development of explanatory covari-
ates for variation in ψ are occurring as part of this ongoing 
research, but a thorough evaluation of ψ will require more 
data than what were available for our analyses. Likewise, as 
moose research and management opportunities continue in 
Colorado, we expect that estimation of the components of 
variation (i.e. process versus sampling variation) will become 
feasible. In the meantime, estimation of calf-at-heel ratios 
will continue to provide an index of Colorado’s moose popu-
lation health.

Our estimation of detection probabilities and calf-at-heel 
ratios was possible because we had radio-collared female 
moose that were reliably observed on multiple occasions. In 
Colorado, radio-collared moose are not a long-term asset. 
For management purposes, the lack of individually identifi-
able animals would introduce the potential for unintended 
repeated observations of individual animals. This dilemma 
could bias calf-at-heel ratio estimation in either direction, 
but it would inherently result in an overestimation of the 
precision of any ratio estimate. However, many cow moose 
exhibit unique visual attributes, such as misshapen ears or 
bald spots. These attributes can serve as individually identifi-
able characteristics and minimize the risk of bias or artificial 
deflation of precision. Similarly, high-intensity and short-
duration sampling strategies can also be used to minimize 
bias and improve precision. Such strategies would deploy 
many observers to simultaneously observe unmarked moose 
within unique spatial areas, reducing the potential of double 

Figure 5. Late summer (August) moose calf-at-heel ratio estimates (ψ) from Colorado, as predicted by occupancy models from 2015 to 
2018. White bars reflect modelled maximum likelihood probabilities and dashed black lines reflect 95% confidence intervals. Gray bars 
reflect a reduction in ψ estimates necessary to correct for three months of moose calf mortality. In the absence of Colorado specific monthly 
moose calf survival estimates, a summer monthly calf survival rate of 0.917 was extracted from research in comparable systems and used for 
the first three months of life.
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counting. While fraught with more complex sampling issues, 
estimation of autumn moose calf detection probabilities 
from hunter observations is also a reasonable extension of 
our results. Regardless, our results suggest that in Colorado, 
implementation of rapid ground surveys post parturition 
will minimize misclassifications of calf-at-heel stemming 
from unknown parturition status, while also reducing the 
potential for bias stemming from calf mortality.

Despite the utility of our results, we recognize several 
key limitations and assumptions to our work, and we sug-
gest future research address several issues. First, our analy-
ses did not accommodate cows with multiple calves. In the 
course of our research, 4.5% of cow moose were observed 
with twin calves. Thus, our estimates are a reflection of 
cows with at least one calf-at-heel but they remain biased 
slightly low. In Colorado, for wildlife management pur-
poses, the magnitude of that bias is considered to be negli-
gible. In other jurisdictions, particularly those that manage 
subspecies of moose with higher twining rates, the mag-
nitude of this bias should be of greater concern. In such 
a scenario, multi-state occupancy models would provide a 
useful tool for accommodating observations that include 
high frequency counts of multiple outcomes (i.e. 0, 1 or 2 
calves observed). Second, our modelling approach required 
the assumption that moose calf mortality was negligible 
during summer months. However, we could only corrected 
for this assumption after-the-fact by applying the calf mor-
tality decay function to ψ estimates. We used a literature-
based monthly survival estimate of 0.917 (Musante et al. 
2010). From a management standpoint, utilization of this 
post hoc correction by CPW’s biologists is likely because 
two key predators of moose calves, wolves Canis lupus and 
brown bears, are largely absent from the landscape. Ideally, 
managers can apply locally collected calf survival estimates. 
This was not an option in our study.

The effects of a changing environment on large ungu-
late population dynamics has been and continues to be a 
topic of research (Solberg et al. 2001, Ditmer et al. 2018, 
Weiskopf et al. 2019). Similarly, in some jurisdictions, har-
vest management plans allow for female harvest based on 
reproductive status (or reproductive output) of adult females 
(Boertje  et  al. 2009, Rughetti  et  al. 2017). These studies 
often link changes in the environment, an independent vari-
able, to productivity parameters. In these cases, productivity 
parameters are treated as a dependent variable, thus contin-
ued efforts to remove bias expands the scope of inference 
that can be drawn from those studies. Ultimately, estimation 
of moose calf detection probabilities and calf-at-heel ratios 
through ground observation provided CPW with produc-
tivity parameter estimates that were previously unavailable. 
These results and future survey methods will be a useful tool 
for future use in evaluating both the effects of ecological 
change and harvest management decisions on moose in Col-
orado. As long as unintended double counting of individual 
moose is mitigated through sampling design, and through 
appropriate timing of surveys, application of a p estimate 
of 0.80 to early summer observations of Colorado’s moose 
would provide a reasonable correction to raw count data. 
Late summer estimates would require application of the 
mortality driven decay function.
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