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Norwegian Univ. of Life Sciences, NO-1432 Aas, Norway. – J. Chipperfield, Norwegian Inst. for Nature, Res., Bergen, Norway. – J. A. Royle, 
USGS Patuxent Wildlife Research Center, Laurel, MD, USA.

Many models in population ecology, including spatial capture–recapture (SCR) models, assume that individuals are dis-
tributed and detected independently of one another. In reality, this is rarely the case – both antagonistic and gregarious 
relationships lead to non-independent spatial configurations, with territorial exclusion at one end of the spectrum and 
group-living at the other. Previous simulation studies suggest that grouping has limited impact on the outcome of SCR 
analyses. However, group associations entail not only spatial clustering of activity centers but also coordinated space use by 
group members, potentially impacting both ecological and observation processes underlying SCR analysis. We simulated 
SCR scenarios with different strengths of aggregation (clustering of individuals into groups with shared activity centers) 
and cohesion (synchronization of detection patterns of members of a group). We then fit SCR models to the simulated 
data sets and evaluated the effect of aggregation and cohesion on parameter estimates. Low to moderate aggregation and 
cohesion did not impact the bias and precision of estimates of density and the scale parameter of the detection function. 
However, non-independence between individuals led to high levels of overdispersion. Overdispersion strongly decreased 
the coverage of confidence intervals around parameter estimates, thereby increasing the probability of erroneous predic-
tions. Our results indicate that SCR models are robust to moderate levels of aggregation and cohesion. Nonetheless, spatial 
dependence between individuals can lead to false inference. We recommend that practitioners 1) test for the presence of 
overdispersion in SCR data caused by aggregation and cohesion, and, if necessary, 2) correct their variance estimates using 
the overdispersion factor ĉ . Approaches for doing both are described in this paper. We also urge the development of SCR 
models that incorporate spatial associations between individuals not only to account for overdispersion but also to obtain 
quantitative information about social aspects of study populations.

Keywords: aggregation, cohesion, coverage probability, grouping, overdispersion, population density, spatial capture–
recapture

The majority of models in population ecology assume that 
individuals are independently distributed and detected. 
Although this assumption is rarely mentioned, it applies to 
commonly used models like Poisson GLMs, capture–recap-
ture (CR) models, distance sampling methods and other 
hierarchical approaches for estimating population level 
parameters such as abundance and density (Knape  et  al. 
2011).

Spatially explicit capture–recapture (SCR) techniques 
were introduced in 2004 (Efford 2004) and their use 
has since expanded rapidly (Borchers and Efford 2008, 
Royle et al. 2013). SCR models enable investigators to uti-

lize the information contained in the spatial configuration 
of individual detections and non-detections to generate spa-
tially explicit estimates of density and abundance (Efford 
and Fewster 2013, Royle  et  al. 2013). Importantly, SCR 
provides an approach to scale up ecological processes at the 
individual level to populations and landscapes (Chandler 
and Clark 2014, Royle et al. 2018).

Like conventional CR, SCR models assume independence 
among individuals (Borchers and Efford 2008, Royle et al. 
2013). In practice, this assumption is often violated by inter-
actions in the spatial configuration of individuals, such as 
territoriality, group-living or periodic aggregations (e.g. feed-
ing and breeding). Non-independence of individuals, such 
as clustering into groups, is being recognized as a potential 
source of bias and inflated precision in capture–recapture 
analysis and other hierarchical methods (Anderson  et  al. 
1994, Pradel  et  al. 2005, Royle 2008, Reich and Gardner 
2014, Muneza  et  al. 2017, Hickey and Sollmann 2018). 
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Because the spatial attribution of individuals and of sam-
pling are explicit in SCR, violations of independence could 
be of particular concern for these models, where the ecologi-
cal process may be impacted by the non-independence in the 
distribution of individuals and the observation process by 
the non-independence of individual detections.

Despite these concerns, SCR models are being applied to 
species with various degree of sociality, including group-liv-
ing ones, such as some members of cetaceans (Marques et al. 
2012), canids (López-Bao  et  al. 2018), ungulates 
(Muneza  et  al. 2017) and primates (Granjon  et  al. 2017). 
Even species not considered as group-living can temporarily 
form close associations between two or more individuals, e.g. 
during calving, breeding or when raising offspring (Bonen-
fant et al. 2004, Bischof et al. 2017).

Here we use simulations to study the consequences of 
ignoring the spatial configuration of individuals into groups 
in SCR models. Recently, López-Bao et al. (2018) used simu-
lations to explore the effect of spatial aggregation of individu-

als in SCR models and concluded that it led to negligible bias 
in abundance estimates, at least when all of the available hab-
itat was sampled. However, in this and another investigation 
involving SCR (Russell et al. 2012), grouping was limited to 
a spatial clustering of activity centers without consideration 
for dependent space use at the home range scale and thus 
correlated detection patterns of group members. Our study 
expands upon this work by addressing non-independence in 
both the spatial distribution of home ranges and in individual 
space use within home ranges and thus detection patterns.

For the purposes of our investigation, we define two 
terms to describe group-association as it relates to the spa-
tial distribution of individuals: aggregation and cohesion. 
Aggregation denotes the degree to which individuals in the 
population coalesce into groups, with all individuals solitary 
at one end of the spectrum (Fig. 1a) and with all individu-
als aggregated into a single group at the other end (Fig. 1b). 
For simplicity, we assume that all members of a group share 
identical activity center (AC) locations and the same home 

Figure 1. Illustration of aggregation (a and b) and cohesion (c and d), leading to non-independent detections of individuals. Points refer to 
individual activity centers (AC, colored by individual) and lighter shading of the plot background indicates higher detection probability. 
Light grey crosses indicate the location of detectors. Individual ACs are displayed with a slight jitter, but their location is identical for all 
members of a group. Aggregation is the process whereby individuals in the population coalesce into a decreasing number of groups with 
increasing group size. The two extremes are shown: (a) all individuals are solitary and (b) all individuals aggregate into a single group. Cohe-
sion (bottom row) is the process whereby group members share an increasing proportion of detection locations within their home range. 
The two extremes are shown: (c) detections of group members are independent of one another and (d) detection patterns for all group 
members are identical (i.e. all members of a group are detected at identical locations). Lines (color-coded by individual) visually connect 
detection locations with the associated individual AC; they do not imply movements.
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range size, but deviations from these assumptions are read-
ily accommodated. Cohesion refers to the degree of corre-
spondence in the pattern of home range utilization – and 
consequently detection patterns – of group members. At one 
extreme, all group members use the shared home range inde-
pendently (Fig. 1c). At the other extreme, individuals move 
through and use the shared home range in unison, being 
detected at the same sites synchronously (Fig. 1d). While 
still relatively simple, this representation of group-associa-
tion as a function of both aggregation within the population 
and cohesion among group members may be more apt to 
describe the relevant processes that could influence the out-
come of SCR analyses. This is a reasonable premise, because 
SCR analyses model both the spatial distribution of home 
ranges (latent AC locations) and individual probability of 
detection within home ranges (implicit in the detection 
function), while assuming independence between individu-
als in both processes.

Non-independence between individuals leads to overdis-
persed observation data and consequently underestimated 
sampling variance (Fletcher 2012). This problem has been 
explored extensively in the capture–recapture context, where 
it can arise from a variety of processes (Lebreton et al. 1992, 
Pradel  et  al. 2005, Choquet  et  al. 2009), including group 
association (Anderson et al. 1994). Considering non-inde-
pendence between individuals as a source of overdispersion 
may help better understand the consequences of grouping 
also in SCR analyses. Furthermore, this perspective offers a 
potential solution to deal with overdispersion via the appli-
cation of a variance inflation factor (Schmidt and Anholt 
1999, Cam et al. 2004). We simulated populations for dif-
ferent combination of aggregation and cohesion to explore 
the effect of grouping on the main parameter estimates of 
interest of SCR analyses: density and the scale parameter of 
the detection function.

Material and methods

General approach

Our objective was to explore the consequences of group-
association for parameters estimated with SCR models. To 
this end, we simulated populations with different levels of 
aggregation, cohesion and density and exposed them to a 
virtual detection process. This approach yielded datasets that 
mimicked observations from real-life populations with vary-
ing degree of independence between individuals. We then 
fitted a simple SCR model that assumed independent distri-
bution and detection of individuals to each simulated data 
set. Finally, we quantified overdispersion in the data and 
evaluated the performance of each model in terms of pre-
cision, bias and coverage of the 95% confidence intervals 
associated with key parameter estimates.

Simulations

Habitat and detector grid
The habitat was defined as a square of 20 × 20 distance units 
(du). A square 12 × 12 detector grid (1 du detector spacing) 
was centered on the habitat, leaving a 4.5 du wide habitat 
buffer around the detector grid (Fig. 2).

Aggregation and AC placement
Spatial aggregation of individuals was simulated as a cluster-
ing of individual activity centers into groups of increasing 
size α (and therefore decreasing number of groups, Fig. 2). 
Given a total population size N, α can take values between 
1 (all-solitary) and N (aggregation of the entire popula-
tion into a single group Fig. 2). Although α typically var-
ies between groups in real populations, in our example we 
assume that populations are made up of groups of identical 

Figure 2. Examples of a population of 128 individuals configured into different levels of aggregation (group size). Individual activity centers 
(orange points) are displayed with a jitter, but their location is identical for all members of a group (shown as clusters). Light-colored crosses 
indicate the location of detectors.
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size. All members of a group shared the same AC location 
during simulations. Group ACs were drawn randomly from 
the square habitat. We assume that N is fixed, and thus the 
model represents a binomial point process based on a uni-
form intensity surface (Illian et al. 2008).

Cohesion and detection
The basic SCR model assumes a direct link between the 
probability (or frequency) of detecting individual i at detec-
tor j and the distance dij from this detector to the individual’s 
AC. The diminishing detection probability with increasing 
distance from the AC is often modeled using the half-normal 
detection function:

p p
d

ij
ij=
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ö
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÷0

2

22
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	 (1)

where p0 and σ are the magnitude and scale parameter of the 
detection function, respectively. Observations (detection: 
y = 1 and non-detection: y = 0) are then realized as the out-
comes of a Bernoulli process such that

y pij ij∼ Bernoulli ( ) 	 (2)

This formulation of the observation process encompasses 
both the variation in detection probability across space due 
to individual home range utilization, as well as the efficiency 
of the detection process (e.g. search effort). Although SCR 
analysis, like CR, often model multiple detection occasions, 
this is not indispensable, as replication of detection oppor-
tunities is provided through the spatial dimension (multiple 
detectors) and thus makes detection probability identifiable 
during a single occasion (Efford et al. 2009). We opted for 
a single-occasion model with binary detection in this study, 
as this most closely resembles data we are working with in a 
current project – non-invasive genetic monitoring of large 
carnivores in Scandinavia – where we have limited infor-
mation about the temporal structure of searches or sample 
deposition by individuals (Milleret et al. 2018).

We modeled cohesion (Fig. 1c–d) as a probabilistic mix-
ture of two extreme detection patterns for each individual: 
an independent detection pattern yij (but still conditional on 
its group-specific AC) and a group-specific detection pattern 
ygj. For each group g (g in 1…G), the group-specific detec-
tion history was modelled as:

y pgj gj∼ Bernoulli ( ) 	 (3)

with
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Then, each member of the group randomly follows the 
group-specific pattern or makes an independent choice with 
probability γ (cohesion) and 1 − γ, respectively:

Cij ∼ Bernoulli γ( ) 	 (5)

Finally, detection �yij  of individual i at detector j is  
realized by

�y C y C yij ij gj ij ij= + −( )1 	 (6)

This process induces dependency – in terms of adherence to 
a common detection pattern – between members of a group, 
ranging from full independence (γ = 0) to an identical pat-
tern of detections (γ = 1).

Equations 3–6 generate cohesion by cloning individual 
detection patterns of group members, which is also a way 
overdispersion has been introduced in the non-spatial CR 
literature (Anderson et al. 1994). The mechanism behind 
such correlation in detection patterns among group mem-
bers is their spatio–temporal synchronization of space use 
(shared movements and home ranges) and thus exposure 
to detectors. If an individual has been detected at a given 
detector, it makes detection of its group members at that 
detector more likely, but not certain. Even in cases where 
spatial association is nearly perfect, detection patterns of 
group members may not be identical. The case representing 
γ = 1 is thus unlikely to be encountered in studies of real 
populations.

Simulation scenarios
For the simulations, we set σ = 1.5 du and the baseline detec-
tion probability p0 = 0.1. The total number of individuals 
within the habitat was kept constant (n = 128) across all 
simulations and translates into an overall density of 0.32 
individual ACs per du2. We generated 40 different scenarios 
from different combinations of values of cohesion γ (0, 0.25, 
0.5, 0.75, 1) and aggregation α represented by group sizes of 
1 (all solitary), 2, 4, 8, 16, 32, 64 and 128 (entire population 
in one large group, Fig. 2) We ran 1000 simulations for each 
scenario, resulting in 40 000 simulated data sets.

Additional simulations

López-Bao  et  al. (2018) reported a slight negative bias in 
SCR-based abundance estimates from simulations using an 
unsampled buffer area around the detector grid, but not when 
the entire available habitat was sampled. In order to test for 
the role of a buffer in modulating the impact of aggregation 
and cohesion on inferences, we repeated the analysis with 
an equivalent habitat size (20 × 20 du), population density, σ 
and p0, but with a detector grid (same spacing) that covered 
the entire available habitat. Finally, to explore the impact of a 
changing spatial extent (and thus population size, detections 
and the proportion of the total population constituted by 
a group), we halved the habitat square together with a cor-
responding reduction in the detector grid, without changing 
the density of ACs. This led to a simulated population of 64 
individuals occupying a 10 × 20 du habitat. Given the lower 
population size in this third state–space configuration, we 
used group sizes of 1, 2, 4, 8, 16, 32 and 64 individuals and 
generated 35 000 simulated datasets.
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SCR model fitting and evaluation of model 
performance

We fitted a basic SCR model which accounted for neither 
aggregation nor cohesion (Supplementary material Appen-
dix 3) to each simulated dataset. Models were fitted in R 
(<www.r-project.org>) using function secr.fit from pack-
age ‘secr’ ver. 3.2.0 (Efford 2015). R code for implementing 
simulations and fitting an SCR model to simulated data are 
provided in the Supplementary material Appendix 1.

We used relative bias, coefficient of variation and cover-
age to evaluate the effect of aggregation and cohesion on esti-
mates of density D and the scale parameter σ of the detection 
function.

Relative bias (RB) was calculated as:

RB =
−θ θ
θ

	 (7)

where θ is the true (simulated) value of the parameter and θ  
is the mean estimate.

The precision of each parameter estimate θ̂  was assessed 
through its coefficient of variation (CV; Walther and Moore 
2005):

CV
SD

=
( )θ̂

θ
	 (8)

Where SD θ̂( )  is the standard deviation of the estimate. We 
calculated the coverage of the 95% credible interval (‘cover-
age’), i.e. the probability that the 95% confidence interval 
of the parameter estimate contains the true value of that 
parameter.

Non-independence between individuals (i.e. aggregation) 
might lead to overdispersion in CR datasets (Anderson et al. 
1994), we therefore calculated the overdispersion factor ĉ  
from counts of unique animals per detector (Fletcher 2012):
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where P y Vjj

k
= −( )=∑ � ˆ / ˆµ

2

1
; µ̂  and V̂  are the esti-

mated mean and variance respectively, the �y j  are the inde-
pendent random variables (i.e. the counts of unique animals 
at the j = 1…k detectors), ρ is the number of parameters in 
the model (i.e. 1 in our case as we assume homogeneous 

density D) and s s nkjj

k
=

=∑ /
1

 where s
V
V

yj j= −( )ˆ

ˆ
ˆ′
µ�  

and ˆ ˆ ˆ/V V′ µ= ∂ ∂ .
An overdispersion factor ĉ > 1  signifies overdispersed 

data, i.e. when the variance in the data exceeds that pre-
dicted by the statistical model. We compared ĉ  to the rela-
tive variance (RV) of D̂ , which we calculated as the ratio of 

the empirical variance among simulations var( ˆ)D  for any 
given simulation scenario and the variance var ( ˆ)0 D  associ-
ated with the independent scenario (α = 1, γ = 0):

RV
Var

Var
=

( )
( )
ˆ

ˆ

D

D0

	 (10)

We did not attempt to fit models to simulated data if no 
individuals were detected or if the average number of detec-
tions per detected individual (i.e. the number of detectors at 
which an individual was detected) was equal to 1. These con-
straints were implemented as they represented conditions 
that would lead to model fitting failure. We also removed 
from further analysis additional simulations that, despite 
meeting aforementioned criteria, resulted nonetheless in fail-
ure during attempted fitting (e.g. inability to estimate key 
parameters) due to sparse data.

Results

Results presented in this section, unless otherwise indicated, 
refer to the simulated cases with a 12 × 12 detector grid sur-
rounded by a 4.5 du unsampled habitat buffer, amounting 
to a total available habitat of 20 × 20 du. Additional results 
for the other two state–space configurations (20 × 20 du and 
10 × 20 du without unsampled habitat buffer) are provided 
in the Supplementary material Appendix 1. Models were 
successfully fitted to all simulated datasets with low and 
moderate levels of aggregation (α ≤ 8), regardless of the level 
of cohesion. Increasing non-independence – both aggrega-
tion and cohesion – was associated with a growing propor-
tion of failed models. At maximum aggregation (α = 128) 
and cohesion (γ = 1), 88% of models failed (Supplementary 
material Appendix 1 Fig. A2, Table A1).

Effects on bias and precision

We detected little systematic bias (<2%) in estimates of den-
sity (D) and the scale parameter of the detection function (σ) 
at low and moderate levels of aggregation (α ≤ 8) and cohe-
sion (γ ≤ 0.25, Fig. 3a, c, Supplementary material Appendix 
1 Table A2). A positive bias in estimates of D was noticeable 
at high levels of aggregation, an effect that was amplified by 
cohesion (e.g. at α = 64, median RB = 23% when cohesion = 0 
and RB = 37% when cohesion = 1; Fig. 3a, Supplementary 
material Appendix 1 Table A2). The coefficient of variation 
(CV) of both D and σ decreased at high levels of aggrega-
tion (α ≥ 32) and cohesion (γ = 1, Fig. 3d). However, even at 
high levels of aggregation and cohesion, the 95% quantiles 
around estimates of overall RB and CV in most cases over-
lapped the nominal values of these measures (Supplementary 
material Appendix 1 Table A2).

Simulations with the entire habitat sampled were char-
acterized by a similar absence of bias and changes in preci-
sion at low and moderate levels of aggregation, regardless of 
the level of cohesion (Supplementary material Appendix 1 
Fig. A3, A4, Table A4, A6). Patterns in bias and CV at high 
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levels of aggregation and cohesion were also qualitatively 
similar to those in simulations with an unsampled habitat 
buffer. Results from the half-sized (10 × 20 du) and full-sized 
(20 × 20 du) habitat without buffer were nearly identical to 
each other qualitatively and quantitatively, but with lower 
among-simulation variation in key parameters in the latter, 
due to the larger sample size (larger population size and more 
detectors, therefore more detections, Supplementary mate-
rial Appendix 1 Fig. A3, A4, Table A4, A6).

Overdispersion and coverage

Overdispersion increases with both cohesion and aggregation 
(Fig. 4). At maximum cohesion (γ = 1), group size is equal to 
overdispersion and predictive of the inflation in empirical 
variance of estimates of D and σ among simulations (Fig. 4).  
Reducing cohesion also reduced overdispersion at a given 
level of aggregation. Overdispersion is manifested as over-
stated precision; coverage of the 95% confidence inter-
vals of both D and σ was therefore drastically affected by 
aggregation (Fig. 5). Coverage was nominal (95%, Fig. 5a)  
in simulated populations composed entirely of solitary 
(independent) individuals but dropped rapidly as aggrega-
tion increased. Decreasing cohesion mitigated the negative 
impact of aggregation on coverage, an effect that was more 
pronounced for σ than for D (Fig. 5), at least in simula-

tions that included an unsampled habitat buffer around the 
detector grid (but see Supplementary material Appendix 1  
Fig. A5, A6). With the exception of extreme dependence 
(maximum aggregation and cohesion), aggregation and 
cohesion had diminished effects on coverage in simulations 
where the detector grid covered the entire available habitat 
compared with simulations that included an unsampled 
habitat buffer (Fig. 5, Supplementary material Appendix 1 
Fig. A5, A6, Table A4, A6). In all three state–space configu-
rations, coverage of D and σ returned to near their nominal 
values for most combinations of aggregation and cohesion 
once we corrected the variance estimates using the inflation 
factor �̂ ˆc ccorrected var varθ θ( )( ) = ( ) ; Fig. 5, Supplemen-
tary material Appendix 1 Fig. A5, A6). One exception was 
coverage of D in the configuration with a habitat buffer: 
here, coverage remained comparatively poor at high aggrega-
tion and low cohesion (Fig. 5b).

Discussion

Our simulation study revealed that spatial capture–recap-
ture analyses are robust to low and moderate levels of spatial 
dependence between individuals, at least in terms of bias. 
However, both aggregation and cohesion led to overdispersed 
data and decreased the coverage of key parameter estimates. 

Figure 3. Boxplots showing the effect of different levels of group association (aggregation into groups of increasing size: x-axis; cohesion of 
detections: colors) on key parameters estimated by SCR models fitted to simulated data. Shown are relative bias (RB) and coefficient of 
variation (CV) for density (D, (a) and (b)) and the scale parameter of the detection function (σ, (c) and (d)). The horizontal line in (b) and 
(d) indicates the nominal value of CV (all solitary individuals) for reference. The chosen aspect ratio excludes some extreme outliers from 
the graphs.
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Thus, spatial association among individuals in a population, 
if ignored, can lead to unreliable inferences. Understand-
ing aggregation and cohesion as a source of overdispersion 
could provide access to a framework for goodness-of-fit test-
ing (Pradel et al. 2005) and model selection (Anderson et al. 
1994) and, as we have done here (Fig. 5), correct underes-
timated sampling variance and poor coverage of confidence 
intervals (Lebreton et al. 1992).

A growing number of studies and monitoring proj-
ects employ SCR to estimate density and other ecological 
parameters (Chandler and Clark 2014, Royle et al. 2018). 
Many of the species targeted exhibit various degrees of 
group association, from temporary affiliations during breed-
ing or offspring care to long-term congregation into large 
groups. What do our findings mean in terms of aggregation 
and cohesion in real life populations that may be studied 

using SCR? Investigators that use SCR to estimate popula-
tion density or abundance for solitary species or species with 
small group sizes (such as family groups of cougars consisting 
of a female and her dependent young; Russell et al. 2012) 
can likely trust their inferences even if they ignore grouping. 
However, there is indication that coverage starts dropping 
already here, especially if cohesion is high, as is most likely 
the case for dependent offspring (Fig. 5). As both aggrega-
tion and cohesion increase, estimates of D and σ become less 
reliable (lower coverage). For example, inferences will more 
likely be flawed for a population of ungulates that consists 
of small and cohesive herds than for a species of marmots, 
where individuals live in family groups of similarly small 
size but where group members perform mostly independent 
movements (Armitage 2014). At very high levels of aggrega-
tion, such as communally roosting bats with independent 

Figure 4. Overdispersion factor ( ĉ ) increases with the aggregation of individuals in the population into groups of increasing size and the 
cohesion of individuals within each group (a). Panel (b) shows the relationship between the empirical overdispersion, measured by the 
relative variance of density RV(D) and the calculated overdispersion factor ( ĉ ) for different levels of cohesion. Panel (c) shows the relation-
ship between RV(σ) and ĉ .
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nightly hunting forays (low cohesion; Audet 1990) or popu-
lations of fish that form large schools (high cohesion), infer-
ences might be severely impacted when grouping is ignored.

In general, we recommend that investigations into 
the reliability of ecological models in the face of violated 
assumptions consider coverage, as bias and precision alone 
may provide a more optimistic assessment than is war-
ranted. As aggregation and cohesion increase, investigators 
run a growing risk of obtaining erroneous estimates of key 
parameters (i.e. with 95% CI limits that do not include the 
true parameter value). For example, in our simulations of 
a population composed on 128 individuals, even moderate 
aggregation into groups of eight individuals, led to noticeably 
reduced coverage of D (67%) at cohesion γ = 0.75 (Fig. 5).  
In the habitat/detector grid configuration that included an 
unsampled habitat buffer, the effect of aggregation on cov-
erage was most pronounced for estimates of density, where 
increasing group sizes led to a rapid decrease in cover-

age, even at low levels of cohesion (Fig. 5, Supplementary 
material Appendix 1 Table A2).

Poor coverage at high levels of aggregation and cohesion 
results from overdispersion in the data. In general, we found 
that aggregation and cohesion had stronger positive effects 
on overdispersion (and thus negative effects on coverage) in 
simulations with a habitat buffer around the detector grid 
(which is the case in most SCR studies) than in simulations 
where the entire habitat was sampled. Consistent with these 
findings, López-Bao  et  al. (2018) reported lower coverage 
of population size in simulations that included an unsam-
pled habitat buffer around the detector grid. Using Fletch-
er’s (2012) method to estimate the overdispersion factor 
(Fletcher’s ĉ ) from count data, we were able to correct our 
precision estimates of the parameters of interest and recover 
nominal levels of coverage in most aggregation and cohe-
sion situations. However, we also found that the relationship 
between the empirical overdispersion (as measured by RV) 

Figure 5. Panels (a) and (c) show the decrease in coverage of density (D) and the scale parameter of the detection function (σ) for SCR data 
simulated with different levels of aggregation (group size; x-axes) and cohesion (probability of shared detection pattern, colors). Coverage 
is the proportion of simulations where the 95% confidence interval of the estimates contains the true parameter value. Panels (b) and (d) 
show coverage of variance estimates corrected for overdispersion.
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and Fletcher’s ĉ  changes at very high levels of aggregation 
(Fig. 4b–c). Thus, at high levels of aggregation, the mitigat-
ing effect of the correction factor is diminished (Fig. 5b, d, 
Supplementary material Appendix 1 Fig. A5, A6).

The apparent non-monotonic relationship between 
group size and other measures such as RV D̂( )  and coverage 
appears to be an artifact of the removal of failed simulations 
(Supplementary material Appendix 1 Fig. A2, Table A1, A3, 
A5). Similarly, filtering of simulations at extreme levels of 
aggregation and cohesion is the likely culprit behind devia-
tions of RB and CV from their nominal values. With increas-
ing cohesion and increasing group sizes, stochastic events are 
shared by many or all individuals and their influence on the 
data can become overwhelming. In the extreme case, a popu-
lation composed of a single group of 128 individuals that all 
share one identical detection pattern, either all individuals 
are detected or none (simulation failure). When successfully 
fitted, estimates of model parameters will be based on clones 
of a single capture history. However, we reiterate that this 
scenario is unrealistic: most real-life populations will have 
average group sizes that are fractions of total population size 
and detection patterns will differ between group members 
even if their space use is highly synchronized.

Our approach for simulating non-independence between 
individuals distinguishes between non-independence of 
home ranges (shared activity centers) and non-independence 
due to cohesion of space use by individuals. This advances 
the conceptual formulation of models beyond previous 
work (Russell et al. 2012, Reich and Gardner 2014, López-
Bao et al. 2018) and improves the diagnosis of areas of the 
grouping parameter space where current SCR models have a 
low predictive power and lead to problematic inferences. We 
picked generic settings for our simulations and tested three 
different state–space configurations. Qualitatively, we expect 
the patterns observed in this study to be similar regardless of 
the specific parameters of the simulated population (N, σ, 
size and shape of the habitat) and the detection process (p0, 
density and configuration of detectors). However, the mag-
nitude of the effects of aggregation and cohesion on param-
eter estimates is liable to vary as the context provided by 
the ecological and observation processes changes. It would 
therefore be useful to explore the impact of group-living for 
a wider range of biological scenarios and with greater realism 
in future studies. Such investigations could target the poten-
tial effects of within-population variation in group size (e.g. 
through a Poisson cluster process, Diggle 2003) and group 
structure (e.g. different behaviors according to social status). 
Finally, in our simulations, cohesion was treated as a prop-
erty of detection histories rather than movements. The use 
of mechanistic models of space use and group association 
would help shed light on which levels of cohesion to expect 
in practice.

Spatial-capture recapture methods are evolving rapidly. 
Already, they have been expanded to allow for modelling 
open populations (Chandler and Clark 2014, Bischof et al. 
2016) and to estimate demographic rates (Ergon and Gard-
ner 2014, Chandler  et  al. 2018), non-euclidean distances 
(Sutherland  et  al. 2015), barrier effects (Bischof  et  al. 
2018), connectivity (Morin  et  al. 2017) and epidemiol-
ogy (Muneza  et  al. 2017). In addition to further research 

to develop an improved correction for overdispersion due 
to non-independence in SCR models, we encourage devel-
opment of approaches that explicitly model and thus esti-
mate aggregation and cohesion (see also Reich and Gardner 
2014). This would not only provide another solution to 
problems associated with overdispersion and inflated preci-
sion revealed here, but also allow for estimation of biologi-
cally relevant quantities, such as measures of the strength 
of association, group sizes and perhaps even help designate 
detected individuals to groups by treating group member-
ship as a latent variable. Currently there are no SCR models 
that can do so, but the conceptual formulation of grouping 
as a combination of aggregation and cohesion used here may 
help guide the development of more general SCR models in 
this area of active research.

Conclusions

Aggregation and cohesion result in overdispersed data and 
decrease the reliability of predictions generated by SCR 
models by over-stating precision. As the scope of SCR analy-
ses expands to include an increasing number of species and 
systems, so does the range of social structures that may influ-
ence how individuals are configured in space. Investigators 
can mitigate the effect of non-independence between indi-
viduals by correcting variance estimates for overdispersion. 
Finally, we see the explicit incorporation of grouping into 
SCR models as a desirable development. Doing so would 
not only help mitigate potential bias and imprecision arising 
from non-independence in the spatial configuration of indi-
viduals, but could also provide a means for obtaining addi-
tional important quantitative information about the ecology 
of the studied system. While to our knowledge there are cur-
rently no SCR models that incorporate group association, 
this has already been incorporated into other abundance esti-
mation approaches (Clement et al. 2017, Hickey and Soll-
mann 2018), which could serve to stimulate developments 
in SCR. Meanwhile, our simulation framework can be used 
as a tool for exploring model sensitivity to violations of inde-
pendence, in cases where grouping occurs but is ignored.
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