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          Single nucleotide polymorphisms (SNPs) are the most fre-
quent type of DNA sequence polymorphism. Their abundance 
and uniform distribution in genomes make them very powerful 
genetic markers. Several SNP genotyping methods have been 
developed. For low-to-medium throughput genotyping, the 
KBioscience Competitive Allele-Specifi c PCR genotyping sys-
tem (KASPar; KBioscience Ltd., Hoddesdon, United Kingdom) 
appears to be an interesting approach ( Cuppen, 2007 ) that has 
been successfully applied in animals and plants ( Nijman et al., 
2008 ;  Bauer et al., 2009 ;  Cortes et al., 2011 ). For genetic diver-
sity studies with SNP markers, it is very important to determine 
the representativeness of the discovery panel ( Albrechtsen et al., 
2010 ). Ascertainment bias of the SNP markers affects the eval-
uation of genetic parameters, as was observed for the  Citrus  
L. genus using SNP markers mined in a single Clementine cul-
tivar ( Ollitrault et al., 2012 ). Recently,  Garcia-Lor et al. (2013)  
sequenced 27 amplifi ed nuclear gene fragments for 45 geno-
types of  Citrus , which resulted in the identifi cation of 1097 
SNPs. Taking advantage of these previously obtained SNP data, 
the objective of this work was to implement a set of polymor-
phic SNP markers for systematic germplasm bank characteriza-
tion within the  Citrus  genus and to investigate their transferability 
across the Aurantioideae [Engler] subfamily. More   generally, 

the objective was to estimate the usefulness of SNP markers 
developed using KASPar technology, which were selected from 
a limited intrageneric discovery panel, for broader diversity 
analysis at the intra- and intergeneric levels. 

 METHODS AND RESULTS 

 The 42 SNP markers used in this study were selected from SNPs identifi ed 
by  Garcia-Lor et al. (2013)  in 27 nuclear genes. Most cultivated citrus (except 
for  C. aurantifolia    (Christm.) Swingle) arose from interspecifi c hybridization 
of three ancestral taxa:  C. medica  L.,  C. reticulata  Blanco, and  C. maxima  
(Burm.) Merr  . ( Nicolosi et al., 2000 ;  Barkley et al., 2006 ;  Garcia-Lor et al., 
2012 ). Therefore, we selected SNPs between and within these three taxa (based 
on seven  C. reticulata , fi ve  C. maxima , and fi ve  C. medica  accessions). Primers 
were defi ned by KBioscience (http://www.kbioscience.co.uk/) from each SNP-
locus fl anking sequence (Appendix S1). Two allele-specifi c oligonucleotides 
and one common oligonucleotide were defi ned for each locus ( Table 1 ) . The 
KASPar system uses two Förster resonance energy transfer (FRET) cassettes, 
where fl uorometric dye is conjugated to the primer but quenched via resonance 
energy transfer. In this system, sample DNA is amplifi ed in a thermal cycler 
using allele-specifi c primers, leading to the separation of fl uorometric dye and 
quencher when the FRET cassette primer is hybridized with DNA ( Cuppen, 
2007 ). Normalized signals of each SNP allele ( x  and  y ) were provided by KBio-
science. Automatic allele calls provided by KlusterCaller software were visu-
ally checked with two-dimensional plot representations using SNPViewer 
software (KBioscience Ltd.). 

 Eighty-four accessions (Appendix 1) were genotyped for the 42 SNP mark-
ers. The sample set included representatives of the two tribes of the Auran-
tioideae (Clausenae and Citreae). In Clausenae, the subtribe Clauseniae was 
represented by four genotypes (three genera). Within the Citreae, three sub-
tribes were represented: Triphasilinae (one genus was included), Balsamocitri-
nae (represented by six genera), and Citrinae (11 genera represented). For the 
Citrinae, we adopted the subdivision of this tribe into three groups (as proposed 
by  Swingle and Reece, 1967 ), namely the primitive citrus fruit group (four acces-
sions of four genera), the near citrus fruit group (three accessions of two 
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AURANTIOIDEAE SUBFAMILY  1  

   ANDRES     GARCIA-LOR    2  ,   GEMA     ANCILLO    2  ,   LUIS     NAVARRO     2,4   ,  AND    PATRICK     OLLITRAULT     2,3,4    

  2 Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Apartado Ofi cial, 46113 
Moncada (Valencia), Spain; and  3 CIRAD, UMR AGAP, F-34398, Montpellier, France 

  •  Premise of the study:  Single nucleotide polymorphism (SNP) markers based on Competitive Allele-Specifi c PCR (KASPar) 
were developed from sequences of three  Citrus  species. Their transferability was tested in 63  Citrus  genotypes and 19 
relative genera of the subfamily Aurantioideae to estimate the potential of SNP markers, selected from a limited intrageneric 
discovery panel, for ongoing broader diversity analysis at the intra- and intergeneric levels and systematic germplasm 
bank characterization. 

 •  Methods and Results:  Forty-two SNP markers were developed using KASPar technology. Forty-one were successfully 
genotyped in all of the  Citrus  germplasm, where intra- and interspecifi c polymorphisms were observed. The transferability and 
diversity decreased with increasing taxonomic distance. 

 •  Conclusions:  SNP markers based on the KASPar method developed from sequence data of a limited intrageneric discovery 
panel provide a valuable molecular resource for genetic diversity analysis of germplasm within a genus and should be useful 
for germplasm fi ngerprinting at a much broader diversity level.  

  Key words:  Competitive Allele-Specifi c PCR; genetic diversity; Rutaceae; single-nucleotide polymorphisms (SNPs). 
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genera), and the “true citrus fruit trees” group (48 accessions of six genera). 
High-molecular-weight genomic DNA was extracted from leaf samples using a 
DNeasy Plant Mini Kit (QIAGEN, Madrid, Spain) according to the manufac-
turer’s instructions. 

 From the 42 SNP primers tested, only one did not produce polymorphisms. 
To check the accuracy of the allele call for the 41 other markers, we compared 
the KASPar genotyping data with Sanger sequencing data available for 35 ac-
cessions of the “true citrus fruit trees” ( Garcia-Lor et al., 2013 ). The conformity 
level was 95.41%, while 2.99% did not agree and 1.60% were missing data. 

 The allele number and the percentage of missing data are presented for each 
taxon ( Table 2 ) . The expected ( H  e ) and observed heterozygosity ( H  o ) were 
evaluated for  C. reticulata ,  C. maxima ,  C. medica , the  Citrus  genus, and the 
“true citrus fruit trees” excluding the  Citrus  genus. Data analysis was conducted 
with PowerMarker version 3.25 ( Liu and Muse, 2005 ) and DARwin ( Perrier 
and Jacquemoud-Collet, 2006 ) software. 

 The missing data rate was very low in  Citrus  (0.9%) and, generally, in the 
“true citrus fruit trees” group (0.6%, excluding the  Citrus  genus). The missing 
data rate increased to 6.5% and 6.7% in the close citrus and primitive citrus 
groups of the Citrinae subtribe, respectively, reaching a level of 9.8% and 
22.4% for the two other subtribes of the Citreae tribe, the Triphasilinae and the 
Balsamocitrinae, respectively. Missing data reached 26.8% in the Clauseniae 
tribe. These results indicate an increasing loss of transferability with increasing 
taxonomic distance. As expected due to the discovery panel, the  Citrus  genus 
was the most polymorphic (an average of two alleles per locus;  H  e  = 0.30;  H  o  = 
0.23), followed by the “true citrus fruit trees” group excluding the  Citrus  genus 
(alleles per locus [ A ] = 1.32;  H  e  = 0.09;  H  o  = 0.02). Diversity within and be-
tween the other taxa decreased considerably (data not shown). However, de-
spite this important loss of polymorphism, all citrus relatives were differentiated 
when missing amplifi cation was considered to represent null alleles, providing 
molecular fi ngerprinting for traceability in germplasm bank management. 

 Among the  Citrus  ancestral taxa,  C. reticulata  was the most polymorphic 
( A  = 1.37;  H  e  = 0.11), followed by  C. medica  ( A  = 1.15;  H  e  = 0.04), and  C. maxima  
( A  = 1.10;  H  e  = 0.03). Considering as subpopulations the three species used in 
the discovery panel, the  F  ST  value was very high (0.842). The high level of dif-
ferentiation between  C. reticulata ,  C. maxima , and  C. medica  for this SNP 
panel was well illustrated by neighbor-joining analysis ( Fig. 1 ) . The relative 
position of the accessions of secondary species ( C. aurantium  L.,  C. aurantifolia , 
 C. limon  (L.) Osbeck,  C. paradisi  Macfad., and  C. sinensis  (L.) Osbeck) and 
hybrids (Clementine, tangor, and tangelo) agrees with previous molecular stud-
ies ( Nicolosi et al., 2000 ;  Ollitrault et al., 2012 ;  Garcia-Lor et al., 2012 ). There-
fore, these markers should be useful as phylogenetic tracers of DNA fragments 
in secondary cultivated citrus species. 

 CONCLUSIONS 

 Forty-one SNP markers were successfully developed from 
SNP loci mined by Sanger sequencing in a discovery panel in-
cluding 17 genotypes of the three main cultivated  Citrus  ances-
tral taxa. The genotyping data displayed high conformity with 
previous sequencing data. Genotyping was highly successful 
within the  Citrus  genus, and the genetic organization displayed 
by this SNP marker panel was in agreement with previous stud-
ies. The frequency of missing data was higher for the citrus 
relatives and increased with taxonomic distances within the 
Aurantioideae subfamily, suggesting incomplete transferabil-
ity. The polymorphism revealed within the relatives of the “true 
citrus fruit trees” group remained relatively high but decreased 

 Fig. 1. Neighbor-joining analysis based on simple matching dissimilarities from 41 SNP loci for 50 accessions belonging to the genus  Citrus , includ-
ing secondary species and hybrids. Numbers near nodes are bootstrap values based on 1000 resamplings (only values >50% are indicated).   
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strongly when considering the other citrus relatives. However, 
all citrus relative genotypes were differentiated. The markers 
that were developed appeared to be useful for phylogenic stud-
ies within the “true citrus fruit trees” group. Therefore, SNP 
markers based on the KASPar method developed from sequence 
data of a limited intrageneric discovery panel provide a valu-
able molecular resource for genetic diversity analysis of germ-
plasm within a genus and should be useful for germplasm 
fi ngerprinting at a much broader diversity level. 
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  APPENDIX  1. Accessions analyzed in this study. Information presented: species name, Latin name or common name, accession number, ex-situ germplasm bank. 
IVIA = Carretera Moncada, Naquera, Km 4.4, Apartado Ofi cial, 46113 Moncada (Valencia), Spain; INRA/CIRAD = Station INRA, 20230 San Giuliano, France. 

 1. Citreae 

  Balsamocitrinae:  Aegle marmelos   (L.) Corrêa: 345, IVIA;   Aeglopsis chevalieri   
Swingle: 308, IVIA;   Afraegle paniculata   (Schum. & Thonn.) Engl.: 273, 
IVIA;   Balsamocitrus dawei   Stapf: 372, IVIA;   Feroniella oblata   Swingle: 
585, IVIA;   Swinglea glutinosa   (Blanco) Merr.: 292, IVIA. 

 Citrinae 

 True citrus fruit: 

   Citrus :  C. maxima   (Burm.) Merr.: Azimboa, 420, IVIA; Chandler, 207, IVIA; 
Da xanh, 589, IVIA; Deep red, 277, IVIA; Flores, 673, INRA/CIRAD; Gil, 
321, IVIA; Nam roi, 590, IVIA; Pink, 275, IVIA; Sans Pepins, 710, INRA/
CIRAD; Tahiti, 727, INRA/CIRAD; Timor, 707, INRA/CIRAD.   C. medica   
L.: Arizona, 169, IVIA; Buddha hand, 202, IVIA; Corsican, 567, IVIA; 
Diamante, 560, IVIA; Humpang, 722, INRA/CIRAD; Poncire Commun, 
701, INRA/CIRAD.   C. reticulata   Blanco: Bombay, 518, INRA/CIRAD; 
Dancy, 434, IVIA; De soe, 713, INRA/CIRAD; Imperial, 576, IVIA; Fuzhu, 
571, IVIA; Ladu, 595, INRA/CIRAD; Ladu ordinaire, 590, INRA/CIRAD; 
Ponkan, 482, IVIA; Swatow, 175, INRA/CIRAD; Szinkom, 597, INRA/
CIRAD; Vohangisany ambodiampoly, 437, SRA; Willow leaf, 154, IVIA. 
  Papeda :  C. hystrix   DC.: Combava, 178, IVIA;   C. ichangensis   Swingle: 
Papeda Ichang, 358, IVIA;   C. micrantha   Wester: Micrantha, IVIA. 

  Secondary species:  C. aurantifolia   (Christm.) Swingle: Alemow, 288, IVIA; 
Calabria, 254, IVIA; Mexican, 164, IVIA.   C. aurantium   L.: Bouquet de 
fl eurs, 139, IVIA; Cajel, 108, IVIA; Seville, 117, IVIA.   C. limon   (L.) 
Osbeck: Eureka frost, 297, IVIA; Rough lemon, 333, IVIA; Volkamer 
lemon, 432, IVIA;   C. paradisi   Macfad.: Duncan, 274, IVIA; Marsh, 176, 
IVIA; Rio red, 289, IVIA.   C. sinensis   (L.) Osbeck: Lane late, 198, IVIA; 
Sanguinelli, 34, IVIA; Valencia late, 363, IVIA. 

  Hybrids:  Clementine, Clemenules, 22, IVIA; Tangelo, Orlando, 101, IVIA; 
Tangor, King, 477, IVIA. 

   Clymenia  :   C. polyandra   (Tanaka) Swingle: 584, IVIA. 

   Eremocitrus  :   E. glauca   (Lindl.) Swingle: 346, IVIA. 

   Fortunella:     F. crassifolia   Swingle: 280, IVIA;   F. hindsii     Swingle: 281, IVIA; 
  F. japonica   (Thunb.) Swingle: 381, IVIA;   F. margarita   (Lour.) Swingle: 
38, IVIA;   Fortunella  sp. : 98, IVIA. 

   Microcitrus  :   M. australasica   Swingle  : 150, IVIA;   M. australis   Swingle: 313, 
IVIA;   M. australis  ×  M. australasica  : 378, IVIA; Australian Wild Lime, 
314, IVIA; New Guinea Wild Lime, 315, IVIA. 

   Poncirus trifoliata   (L.) Raf.: Flying Dragon, 537, IVIA; Pomeroy, 374, IVIA; 
Rich 75, 236, IVIA; Rubidoux, 217, IVIA. 

  Near citrus fruit :   Atalantia ceylanica   (Arn.) Oliv.: 172, IVIA;   Atalantia 
citroides   Pierre ex Guillaumin, 284, IVIA;   Citropsis gilletiana   Swingle 
& M. Kellerm.: 517, IVIA. 

  Primitive citrus fruit :   Hesperethusa crenulata   (Roxb.) M. Roem.: 580, IVIA; 
 Pleiospermium  sp., 380, IVIA;   Severinia buxifolia   (Poir.) Ten.: 147, 
IVIA;   Severinia disticha   (Blanco) Swingle: 418, IVIA. 

  Triphasilinae :   Triphasia trifolia   (Burm. f.) P. Wilson: 182, IVIA. 

 2. Clauseneae 

  Clauseniae :   Clausena excavata   Burm. f.: 311, IVIA;   Clausena lansium   
(Lour.) Skeels: 343, IVIA;   Glycosmis       pentaphylla   (Retz.) DC.: 148, 
IVIA;   Murraya koenigii   (L.) Spreng.: 377, IVIA. 
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