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Unique bone histology in partial large bone shafts 
from Upper Triassic of Aust Cliff, England: 
An early independent experiment in gigantism
RAGNA REDELSTORFF, P. MARTIN SANDER, and PETER M. GALTON

Redelstorff , R., Sander, P.M., and Galton, P.M. 2014. Unique bone histology in partial large bone shafts from Upper 
Triassic of Aust Cliff, England: An early independent experiment in gigantism. Acta Palaeontologica Polonica 59 (3): 
607–615.

Two giant partial bone shafts, possible femora, from the Rhaetian Bone Bed (Upper Triassic) of Aust Cliff in SW England 
continue to conceal their origin. The most striking characteristic of these bones is their size, showing that dinosaur-like 
gigantism had already evolved by the Late Triassic. Based on their characteristic, columnar shaft morphology, it was 
previously suggested they came from a prosauropod or stegosaur. The bone histology of both specimens is very similar: 
the cortex is always rather thin, not exceeding 10 mm, and is of fibrolamellar type with longitudinal primary osteons. The 
primary osteons show a rather unusual feature, the development of a secondary osteon inside the primary one. The bone 
surface in both specimens shows open vascular canals, suggesting that the animals were still growing at the time of death, 
but an external fundamental system (EFS) is visible in the outermost cortex of specimen BRSMG Cb3870. The external 
cortex shows dense growth marks, but their annual nature is difficult to ascertain. The bones are probably dinosaurian, 
as indicated by the fibrolamellar bone, and possibly belong to an unknown basal sauropodomorph lineage. Alternatively, 
some very large pseudosuchians may have evolved fibrolamellar bone independently as an adaptation for reaching giant 
size.
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Introduction
Identification of fossils can be challenging, especially if only 
isolated bones or, even worse, incomplete isolated bone frag-
ments are preserved. Such fragments can be significant if 
they are of an unusual size and/or shape. In total, five partial 
shafts of large long bones have been found in the historically 
important Rhaetic Bone Bed near the base of the Westbury 
Formation (Upper Triassic) at Aust Cliff near Bristol, SW 
England (Storrs 1994; Galton 2005). The Westbury Forma-
tion was deposited in a shallow marine sedimentary envi-
ronment during a transgressive period of the Westbury Sea, 
as indicated by finds of a rich fish fauna mainly represent-
ed by teeth (summarised by Storrs 1994). Rhaetian fissure 

fills and cave deposits are also known from SW England, 
indicating nearby landmasses that were inhabited by large 
terrestrial animals (e.g., Galton 1998, 2007; Whiteside and 
Marshall 2008). This is indicated by the find of the basal 
sauropodomorph Camelotia borealis represented by a par-
tial skeleton (femur length of 1008 mm) discovered near 
the base of Westbury Formation of nearby Wedmore, Som-
erset (Galton 1998). This skeleton was identified as a basal 
sauropodomorph (melanorosaurid prosauropod), but is now 
regarded as a basal sauropod (Yates 2007, 2010).

Two of the long bone shafts were destroyed in November, 
1940 but, based on the original unillustrated descriptions 
(Stutchbury 1850; Sanders 1876; Reynolds 1946), they were 
tentatively assigned by Galton (2005) to Dinosauria incertae 
sedis and Camelotia borealis. Because of the large size and 

Downloaded From: https://bioone.org/journals/Acta-Palaeontologica-Polonica on 16 Oct 2024
Terms of Use: https://bioone.org/terms-of-use



608 ACTA PALAEONTOLOGICA POLONICA 59 (3), 2014

columnar form of the bone shafts, Galton (2005) considered 
only dinosaurian bones in his comparison. Of the surviving 
elements, Galton (2005) assigned one to Dinosauria incertae 
sedis and the other two tentatively to Stegosauria, because of 
their distinctive columnar shape with an oval cross-section, 
the width being greater transversely than anteroposteriorly. If 
this is correct, these specimens would push the fossil record 
of stegosaurs back into the Late Triassic.

Currently, the earliest evidence for stegosaurs are the 
footprints and trackways of Deltapodus brodricki from 
the Middle Jurassic (Aalenian) of Yorkshire, NE England 
(Whyte and Romano 2001; Whyte et al. 2007). The earliest 
skeletal evidence consists of isolated bones from the Lower 
and Middle Bathonian of Oxfordshire and Gloucestershire, 
England (Galton and Powell 1983) and associated bones 
from the Bathonian of western Siberia (Averianov and Kras-
nolutskii 2009). Articulated skeletons are known of Huay-
angosaurus taibaii from the Bathonian–Callovian of China 
(Zhou 1984; Sereno and Dong 1992; Maidment et al. 2006) 
and of “Lexovisaurus durobrivensis” from the early–middle 
Callovian near, Peterborough, England (Galton 1985; now 
Loricatosaurus priscus, Maidment et al. 2008).

Butler et al. (2006) noted that the Aust Cliff bones lack any 
stegosaurian synapomorphies, a result of their being weath-
ered fragments, as well as the absence of Early Jurassic stego-
saurs, and the small size of all known Triassic ornithischians. 
They concluded that, although the bones “probably represent 
fragmentary femora of large dinosaurs (possibly sauropods)”, 
they cannot be identified “with confidence beyond Reptilia 
indet.” (Butler et al. 2006: 627). Irmis et al. (2007: 15) argued 
that extensive cancellous bone or trabeculae do not provide a 
phylogenetic signal because it can relate to biomechanics and 
life history, and they identified the bones as indeterminate 
Tetrapoda. Maidment et al. (2008: 385), who regarded them 
as indeterminate reptiles, also noted the presence of other 
large reptiles, such as thecodontians, in the Late Triassic. As 
regards the absence of Early Jurassic Stegosauria, the group 
would have been present at least in the Toarcian as indicated 
by the earliest occurrence of its sister group, the Ankylosauria 
(Thompson et al. 2012), the first record of which is a nodosau-
rid represented by a collection of 30 associated plates of four 
types from the upper unit of the Kota Formation of the Pran-
hita-Godavari Valley, India (Nath et al. 2002; for stratigraphy 
see Bandyopadhyay and Sengupta 2006; Bandyopadhyay et 
al. 2010; P. Yadagiri, personal communication 2001; S. Ban-
dyopadhyay, personal communication 2012).

While these views may be correct from the point of view 
of a synapomorphy-based identification, certain taxa such 
as dicynodonts can be excluded from consideration because 
they do not have a straight shaft in any long bone. Also the 
marine reptiles of the Latest Triassic (ichthyosaurs and ple-
siosaurs) can be excluded from consideration because they 
do not reach anywhere near the size of the Aust Cliff bone 
shafts, do not have long straight shafts in their long bones, 
and differ completely in their histology.

Institutional abbreviations.—BRSMG, Bristol City Museum 
and Art Gallery, Bristol, UK.

Other abbreviations.—EFS, external fundamental system; 
LAG, line of arrested growth.

Material and methods
The two large partial bones (BRSMG Cb3869 and BRSMG 
Cb3870) sampled by us were collected from the Rhaetic 
Bone Bed of the Westbury Formation at Aust Cliff, SW En-
gland. Judging from their straight, columnar shape and large 
size (Table 1), the specimens most likely represent midshafts 
of femora (Galton 2005). Measurements are given in Table 1. 
Camelotia borealis was not accessible for histological sam-
pling because it is known only from the holotype femur.

We sampled both bone shafts using the core drilling meth-
od described in Sander (2000) and Stein and Sander (2009). 
The sampling location in BRSMG Cb3870 and Cb3869 was 
determined by the area of the shaft showing the seemingly 
best preserved bone surface (Fig. 1A, B, respectively). To 
obtain the thickest cortex possible, i.e., the optimal growth 
record, from a core sample, long bones need to be sampled 
exactly at midshaft (Sander 2000), but this could not be con-
trolled sufficiently in the two Aust Cliff specimens. The drill 
cores were processed into thin sections and studied with a 
Leica DMLP microscope at University of Bonn and a Nikon 
Eclipse E200 Microscope at University of Cape Town.

Results
Notably, both samples show a very similar but rather unusu-
al bone histology (Fig. 2A, B), suggesting that they pertain 
to the same taxon. The cortex is thin in BRSMG Cb3870, 
not exceeding 10 mm, and surrounds a large medullary area 
filled with an extensive web of trabeculae (Fig. 2A), while 
in BRSMG Cb3869, the cortex is about three times thicker 
(Fig. 2B). The primary bone is fibrolamellar, consisting of 
primary osteons in a matrix of woven-fibred bone. Prima-
ry osteons are oriented exclusively longitudinally. They are 
relatively immature in that the vascular canal remains large, 
and there are only a few lamellae of centripetally deposited 
bone. Both samples show one striking feature, however, that 
only becomes apparent upon close inspection, which is that, 
towards the deeper cortex, many of the primary osteons har-
bour a secondary osteon (Fig. 3A1, A2, B1, B2). These second-

Table 1. Preserved lengths and circumferences measured and total 
lengths estimated for BRSMG Cb3869 and Cb3870. Note disagree-
ment with growth mark counts.

Collection
number

Preserved
length

Circum-
ference

Estimated
length Growth marks

BCM Cb3869 380 mm 430 mm 1100 mm 13-14 annuli
BCM Cb3870 380 mm 373 mm 1000 mm 30-31 LAGs
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ary osteons may also be termed immature in that only a few 
lamellae are present (arrows in Fig. 3A1, A2, B1, B2). The sec-
ondary osteon is clearly separated from the primary osteon 
surrounding it by a resorption line, which appears slightly 
undulating and, unlike a LAG (line of arrested growth), cuts 
into structures of the previously deposited tissue of the pri-

mary osteon (Fig. 3A1, A2, B1, B2). Erosion cavities decrease 
in size towards the bone surface (white arrow in Fig. 3B5) 
and, in most cases, show an at least partial thin lining of 
lamellar bone (black arrow in Fig. 3B5).

In BRSMG Cb3870, an almost avascular outermost cor-
tex is visible (Figs. 2A, 3B3), which still retains a few vascu-

Fig. 1. Photographs in different views of long bone shafts of BRSMG Cb3870 (A) and Cb3869 (B) from the Westbury Formation of Aust Cliff near Bristol, 
UK; in anterior (A1, B1), ?lateral (A2, B2), posterior (A3, B3), ?medial (A4, B4), proximal (B5) and distal (A6, B6) views; cut and ground surface in distal view 
(A5). The specimens represent notably straight shafts of large long bones, presumably femora. Core sample location indicated by the black circle. Note that 
in BRSMG Cb3870 only a small area of outer bone surface is preserved, constraining the sample location. Modified from Galton (2005).
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lar canals opening to the surface. Just below the bone surface, 
the specimen shows 10 or 11 distinctive and closely spaced 
growth marks that form a characteristic convoluted pattern 
because of their incorporation of the superficial blood vessels 
during growth (Fig. 3B4). These LAGs may represent a rather 
thick external fundamental system (EFS; Fig. 3B4), but this 
is difficult to determine because of the thinness of the cortex. 
Alternatively, they may represent slow growth in a zonal pat-
tern. There are 30 or 31 LAGs in total (Fig. 3B3), including 
the 10 or 11 below the bone surface (Fig. 3B4), but the annual 
nature of these LAGs is difficult to evaluate because of their 
close spacing.

BRSMG Cb3869 represents a younger individual. The 
drill bit did not penetrate the entire cortex, the recovered 
thickness being about 10 mm. However, the inner to mid cor-
tex appears cancellous due to numerous erosion cavities (Fig. 
2B), suggesting that it was not much thicker. Erosion cavities 
are scarce and unfilled in the outer cortex (arrows in Fig. 3A3) 
and more frequent in the inner cortex. Here, the cavities are 
either filled by a thin line of lamellar bone or remain unfilled. 
The secondary osteons inside the primary osteons are filled 
with lamellar bone only up to half of their diameter (Fig. 
3A3), giving them the characteristic immature appearance 
as noted above. The outermost cortex is less vascularised 
with simple longitudinal vascular canals, some of which are 
open to the bone surface, suggesting that the animal was still 
growing slowly at the time of death. There appears to be an 
annulus in the outermost cortex, which is quite broad and has 
a stripey appearance, similar to an accumulation of growth 
marks, and may thus be interpreted as an EFS (Fig. 3A3). 
Growth marks are much less distinctive in BRSMG Cb3869 
than in BRSMG Cb3870. Up to possibly 13 or 14 annuli 
(arrows in Fig. 2B) occur in the mid to outer cortex of this 
sample (number 14 may be an EFS).

Based on their bone histology, the two partial femoral 
shafts are likely from the same species, one being somatical-
ly mature and the other younger.

Discussion
Life history variation.—Based on shaft circumference, the 
histologically younger BRSMG Cb3869 is slightly larger 
than histologically older BRSMG Cb3870 (Table 1). How-
ever, circumference measurements may be in error in the 
latter because extensive pre-burial erosion and/or weather-
ing resulted in partial loss of the cortex. The differences 

between the two specimens may, however, also be a result of 
different growth histories. BRSMG Cb3869 formed annuli 
instead of LAGs, i.e., growth was slowed down periodically 
but not arrested at any time as far as the record shows in the 
unremodelled primary bone. Continuous, although not even, 
growth may impact on the specimen’s terminal size, e.g., 
periodically arrested growth results in smaller body size than 
periodically slowed down growth. This is supported by the 
distinctly thicker cortex in the younger, annuli-forming spec-
imen BRSMG Cb3869. The presence of LAGs in the one 
and of annuli in the other specimen may be (i) an ecological 
signal, (ii) sexual dimorphism, or (iii) intraspecific variation.

Regarding hypothesis (i), BRSMG Cb3869 may have 
experienced more agreeable, consistent weather conditions 
than BRSMG Cb3870. Wikelski and Thom (2000) described 
changes in the growth history of an individual of the marine 
iguana Amblyrhynchus christatus from Galapagos, the orig-
inal body length of which decreased about 20% in only two 
years as a result of low availability of food during “El Nino” 
events and resumed growing after environmental conditions 
normalised.

Regarding hypothesis (ii), female reproduction requires 
a vast amount of energy and, thus, growth may be arrested 
during reproduction periods. Egg-shelling requires addition-
al calcium, which in crocodilians is resorbed from the bones 
(e.g., Wink and Elsey 1986; Wink et al. 1987; Schweitzer et 
al. 2007), hence the resorption (erosion) cavities. The latter 
are indeed extensive in the LAG-forming specimen BRSMG 
Cb3870, implying a possible female sex. Linking LAGs with 
reproduction would imply annual reproduction cycles, which 
does occur in wild crocodiles but their reproduction frequen-
cy is usually rather variable from annually to every 2–5 years 
(Joanen and McNease 1971; Lance 1989; Kofron 1990).

Uniqueness of the bone tissue of the Aust Cliff speci-
mens.—The cortical bone histology of the long bone shafts 
from Aust Cliff is unlike any described in the literature so 
far. Since the histology of both bones is the same, showing 
the same peculiarities, they very likely pertain to the same 
taxon. While the cortex of both bones is rather thin in the 
sections, this represents only a minimum thickness because 
of the poorly controlled sampling location. However, Galton 
(2005) pointed out the rather thin cortex of the Aust Cliff 
shafts apparent in the terminal fracture surfaces. Only serial 
sectioning or μCT imaging would resolve the true cortex 
thickness of these bones.

The uniqueness of the histology lies in the development 
of the primary and secondary osteons, with the latter de-
veloped within the former (Fig. 3A1, A2, B1, B2). Normal 
secondary osteons, while commonly following preexist-
ing primary vascularity, cut across existing primary osteon 
boundaries and other existing structures. This is because the 
cutting cone of normal secondary osteons is roughly the size 
of primary osteons and thus obliterates the primary osteon. 
Cutting across primary osteons is only rarely the case in the 
Aust Cliff bones where the cementing line of the secondary 

Fig. 2. Bone histology of long bone shafts from the Upper Triassic near 
Bristol, UK. A. BRSMG Cb3870, a thin cortex, consisting of fibrolamellar 
bone with longitudinal vascular architecture. The deeper part of the cortex 
shows abundant erosion cavities and secondary osteons, grading into can-
cellous bone. B. BRSMG Cb3869, the cortex is thicker and has less distinc-
tive growth marks but shows the same histology as BRSMG Cb3870. Up to 
13 or 14 annuli (arrows) occur in the middle and outer cortex of the primary 
compact bone. The deep cortex becomes increasingly cancellous as a result 
of abundant large erosion cavities.
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osteon is within the lamellae of the primary osteon. In fact, 
the cementing line only becomes apparent at close inspection 
with the compound microcope, using higher magnifications, 
a nearly closed diaphragm, and a condensor. The cutting 
cone of the secondary osteons must have been distinctly 
smaller than usual, and osteoclast activity was influenced by 
the preexisting lamellae of the primary osteon. In fact, we 
are unsure whether to call these structures proper secondary 
osteons or, more descriptively, primary osteons with a two-
phase centripetal deposition.

A clue to understanding this remodelling pattern may be 
the numerous resorption cavities deeper in the cortex, which 
show a similar thin lining of lamellar bone as the secondary 
osteons (Fig. 3B5). The secondary osteons inside the primary 
ones may be part of the same remodelling process acting in 
the inner cortex, except that it was less extensive in the outer 
cortex, resulting in only a little resorption before redepo-
sition commenced again (Fig. 4). During a later resorption 
phase, the unfilled resorption cavities were possibly formed. 
For the lack of modern examples of the peculiar tissue of the 
Aust Cliff bone shafts, its exact mode of formation remains 
difficult to understand.

Histological comparison with other Late Triassic large 
tetrapods.—Based on morphology and microanatomy, i.e., 
the large size and the straight shaft of the partial femora and 
their thin cortex, Galton (2005) suggested affinity of the 
giant Aust Cliff bones with two types of dinosaurs, namely 
prosauropods or stegosaurs. A similarly straight shaft is also 
found in Sauropoda, which had been excluded by Galton 
(2005) based on their thicker cortex, and in large pseudosu-
chian archosaurs (Niedźwiedzki et al. 2012). As noted above, 
the apparent thinness of the cortex may be an artefact of the 
location of sampling sites and fracture planes. Thus, we will 
enter into a closer comparison of the histology of the Aust 
Cliff specimens with these four taxa, namely Pseudosuchia, 
basal Sauropodomorpha, Sauropoda, and Stegosauria.

simple vascular
channel

primary osteon

lamellae

centripetal deposition
of lamellar bone
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Fig. 4. Flow diagram explaining the peculiar patterns of remodelling seen in the Aust Cliff bones BRSMG Cb3869 and Cb3870. In a simple vascular ca-
nal, lamellar bone is deposited centripetally forming a primary osteon. In the Aust Cliff shafts, the inner lamellae of this primary osteon are later resorbed 
from the inside. When erosion stops before the entire primary osteon is resorbed, leaving a resorption line within the primary osteon, new lamellae can be 
deposited and a secondary osteon forms within the primary one. With ongoing resorption, an erosion cavity forms, the size of which exceeds the one of 
the former primary osteon. When resorption stops, deposition of lamellar bone can resume. 

Fig. 3. Detailed bone histology of the femoral shafts from the Upper Tri-
assic near Bristol, UK. A. BRSMG Cb3869, primary osteon modified by 
a secondary osteon that developed inside the primary one; A2, close-up of 
A1, a secondary osteon within a primary osteon clearly shows a resorption 
line (white arrows indicate lamellae deposited in the secondary osteon); A3, 
the outermost cortex poorly vascularized and containing unfilled erosion 
cavities (black arrows). B. BRSMG Cb3870, resorption cutting through 
the lamellae of the primary osteon (discordant) or following them (con-
cordant); B2, close-up of B1, the resorption line of the secondary osteon 
clearly cuts through the tissue of the primary osteon (black arrows indicate 
lamellae deposited in the secondary osteon); B3, up to 19 LAGs (white 
arrows) occuring in the primary cortex, complemented by 11 or 12 in the 
external fundamental system (B4); B5, erosion cavities showing a thin lin-
ing of lamellar bone (black arrow) or none at all (white arrow). Image in 
polarised light.
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The histological diversity of Triassic crurotarsan archo-
saurs has been described comprehensively by de Ricqlès et 
al. (2003, 2008), including large-bodied forms such as phyto-
saurs and rauisuchians. Longitudinal vascular canals, primary 
and secondary osteons as well as numerous growth marks 
are shared with the Aust Cliff bones. A modification of the 
fibro-lamellar bone complex, which is characterised by not 
highly developed woven bone, occurs in the deep cortex, i.e., 
during early development, of some archosaurs (de Ricqlès et 
al. 2003, 2008). Among basal sauropodomorphs, the histolo-
gy of Plateosauridae such as Plateosaurus (Klein and Sander 
2007) and Massospondylus (Chinsamy 1993) is well known 
and differs from that of the Aust Cliff specimens in having 
laminar fibrolamellar bone and few secondary osteons. The 
histology of other basal sauropodomorphs is similar to that 
of Plateosauridae (e.g., de Ricqlès 1968; Chinsamy 1993; 
Klein and Sander 2007). The Aust Cliff bones are also unlike 
Sauropoda, which uniformly have laminar fibrolamellar bone 
usually lacking growth marks (Sander 2000; Klein and Sand-
er 2008; Sander et al. 2011). This histology is even seen in the 
earliest sauropods such as the large cf. Isanosaurus from the 
Late Triassic of Thailand (Buffetaut et al. 2000, 2002; Sander 
et al. 2004). Finally, stegosaur bone histology resembles that 
of the Aust Cliff bones in having fibrolamellar bone with 
predominantly longitudinal primary osteons (Redelstorff and 
Sander 2009; Hayashi et al. 2009), but stegosaurs lack the 
peculiar secondary osteons inside the primary osteons and 
show normal secondary osteons instead.

The Aust Cliff bones simply do not offer a good match 
with any previously described histologies. The presence of 
fibrolamellar bone would suggest dinosaurian affinity, possi-
bly with an unknown lineage of sauropodomorphs. Alterna-
tively, very large pseudosuchian archosaurs may have had a 
bone histology different from that described for other non-di-
nosaurian archosaurs, particularly the smaller rauisuchians, 
by de Ricqlès et al. (2003, 2008). Pseudosuchian affinities 
of the Aust Cliff bones have gained in credibility because a 
very large one (femur length ca. 700 mm) has recently been 
described from Poland, Smok wawelski (Niedźwiedzki et al. 
2012), that occurs in sediments only slightly older than the 
Westbury Formation. Previously, Late Triassic non-dinosauri-
an archosaurs of such large size (up to 6–7 m), with pillar-like 
hind limbs, had been known only from Argentina (Bonaparte 
1981). Very large size in such non-dinosaurian archosaurs 
could have evolved by an increase in growth rate, resulting in 
the fibrolamellar bone seen in the Aust Cliff specimens. Test-
ing this hypothesis would require histological sampling of 
this material. To narrow down the affinities of the large Aust 
Cliff bones, we furthermore hope that the Camelotia material 
can be histologically sampled in the future.

Conclusions
The unique bone histology of the two sampled partial femoral 
shafts from the Rhaetian Westbury Formation at Aust Cliff, 

England, encompasses fibrolamellar bone with longitudinal 
primary osteons, most of which are modified by secondary re-
modelling. Growth marks are common as either LAGs or annu-
li, indicating cyclical growth. In the older specimen, BRSMG 
CB3870, LAGs become gradually more narrow-spaced to-
wards the bone surface, where they form an EFS. The bone 
tissue of the younger but slightly larger specimen, BRSMG 
Cb3869, contains annuli rather than LAGs. This variation in 
type of growth marks in combination with body size may indi-
cate stronger and weaker interruptions of growth as a response 
to ecological variation or sexual dimorphism.

Based on the geological age, the bone size and the straight 
shaft, the affinity of the Aust Cliff bones can only be sought 
among certain dinosaurs (basal sauropodomorphs, Saurop-
oda and Stegosauria) or large pseudosuchian archosaurs. 
However, all sauropodomorphs have a laminar vascular 
architecture, pseudosuchians lack fibrolamellar bone, and 
stegosaurs, while having longitudinal primary osteons, lack 
the secondary modification seen in the Aust Cliff bones. In 
addition, the fossil record of the latter only begins in the 
Middle Jurassic, at least 25 Ma years later than the age of 
the Westbury Formation. While it is clear that the Aust Cliff 
femora represent an early experiment in a graviportal stance 
and gigantism, it is unclear at present in which (presumably 
archosaurian) lineage this experiment took place.
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