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The importance of chemical communication in differ-
ent contexts of an organism’s life has been extensively
studied for a great number of taxa, including inverte-
brates (Dicke & Grostal 2001) and vertebrates such as
reptiles or mammals (Kats & Dill 1998). However, in
the case of birds it has been historically neglected (Kats
& Dill 1998). Nowadays, it has been shown that olfac-
tion may be a more important sense in birds than was
traditionally believed (Steiger et al. 2008). Recent
evidence suggests that birds can use odours in several
ecological contexts and with different functions (Roper
1999, Hagelin 2007, Hagelin & Jones 2007, Rajchard
2007, 2008, Balthazart & Taziaux 2009, Caro &
Balthazart 2010). At the intra-specific level, they are
known to emit chemical compounds, which are impor-
tant in several aspects of avian life histories (Caro &
Balthazart 2010). For example, birds can recognize

their nest using chemical cues (Mínguez 1997,
O’Dwyer et al. 2008, Bonadonna & Bretagnolle 2002,
Bonadonna et al. 2003a,b, 2004, de León et al. 2003,
Caspers & Krause 2011) and they are able to discrimi-
nate the scent of their partners from the scent of other
conspecifics (Bonadonna & Nevitt 2004, Jouventin et
al. 2007). Therefore, chemical cues may play a role in
social behaviour (Hagelin 2007). Chemical cues appear
to also be useful in the relationship between birds and
their environment. For example, birds can use the sense
of smell to discriminate aromatic plants (Petit et al.
2002, Mennerat et al. 2005, Gwinner & Berger 2008),
to orientate and navigate (Bonadonna et al. 2004,
Wallraff 2004, Nevitt & Bonadonna 2005) and to
forage (Hutchison & Wenzel 1980, Nevitt et al. 1995,
Marples & Roper 1996, Kelly & Marples 2004,
Cunningham et al. 2008).

Smelling out predators is innate in birds

Luisa Amo1,*, Marcel E. Visser1 & Kees van Oers1

Amo L., Visser M.E. & van Oers K. 2011. Smelling out predators is innate in
birds. Ardea 99: 177–184.

The role of olfaction for predation risk assessment remains barely explored in
birds, although predator chemical cues could be useful in predator detection
under low visibility conditions for many bird species. We examine whether
Great Tits Parus major are able to use the odour of mustelids to assess preda-
tion risk when selecting cavities for roosting. We analysed whether the
response to predator chemical cues is innate and assessed whether the anti-
predatory response is associated with exploratory behaviour, a proxy for the
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no odour. When one of the cavities contained the odour of a predator, birds
avoided the use of either of the two offered nest-boxes, whereas there was no
avoidance of boxes when one of the nest-boxes contained a control odour.
There was no relationship with exploratory behaviour. We show that the ability
to use the chemical cues of predators is innate in birds, but individual differ-
ences in the response to predator chemical cues cannot be explained by the
personality of the bird.
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The ability to use chemical cues to ascertain preda-
tor presence has been documented in a great number of
taxa (Apfelbach et al. 2005), but scarcely in birds (Kats
& Dill 1998, Hagelin 2007, but see Amo et al. 2008,
Roth et al. 2008). However, using chemical cues to
assess predation risk could be important in birds, espe-
cially in species that use habitats where visual detection
of predators is impaired (Amo et al. 2008). This is the
case in hole-nesting birds such as the Great Tit Parus
major, that use cavities for breeding and roosting,
where they may encounter predators such as mustelids.
The chemical cues of predators provide a first assess-
ment of predation risk. This may be especially impor-
tant when survival depends on ascertaining predator
presence and avoiding an encounter with a predator. In
this case, natural selection may favour the innate detec-
tion of predator chemical cues. Animals may also have
the ability to learn to detect and recognize chemical
cues of predators, since this ability may be important
when confronted with new predators. Naïve animals of
several species are known to discriminate the chemical
cues of their predators (van Damme et al. 1995,
Dalesman et al. 2007, Sundermann et al. 2008). How-
ever, whether the recognition of predator chemical cues
in birds is innate or learned remains unknown. To our
knowledge, the only contexts where the ability to
recognize and respond to chemical cues has been
proved to be innate in birds is in a foraging context
(Bonadonna et al. 2006) and in the discrimination of
the aromatic plants that some species introduce in the
nests (Gwinner & Berger 2008).

Although recognition of the chemical cues of preda-
tors may confer an advantage to prey as it allows an
early assessment of predation risk, it can also lead to an
overestimation of risk if the animal continues to avoid
an area when the predator is no longer present (Kats &
Dill 1998). Therefore, once an animal has detected
predator chemical cues, it should evaluate the ‘real’ risk
of predation that these cues are signalling, to perform
an adequate anti-predatory response. Furthermore, the
response to predator chemical cues may be the result of
the trade-off between the anti-predator responses
appropriate to the risk perceived and other require-
ments such as foraging, reproduction (Lima & Dill
1990, Sih 1992) or the avoidance of costs of the anti-
predatory response itself (Ydenberg & Dill 1986, Sih
1997). Changes in cost–benefits may explain variation
in the anti-predatory response of the same individual,
as well as differences between individuals differing in
sexes or ages that may have a different solution to the
trade off between avoiding predation and other
requirements (Lima & Dill 1990). However, individual

animals often behave in a way that distinguishes them
from other members of their species of the same sex,
state and age class, and understanding the source of
this variation is fundamental to evolutionary studies
(Bennett 1987, Wilson 1998). 

Individuals of many animal species are known to
differ consistently in several aspects of their behaviour,
such as aggressiveness, activity, exploration, risk-
taking, fearfulness and reactivity (Wilson et al. 1994,
Gosling & John 1999, Réale et al. 2007). Suites of these
consistent traits are also referred to as animal personal-
ity, behavioural syndromes, coping styles or tempera-
ment (Koolhaas et al. 1999, Sih et al. 2004, Groothuis
& Carere 2005, Réale et al. 2007) and are comparable
to how humans differ in personality.

Here, we explore the use of chemical cues of preda-
tors for predation risk assessment when selecting cavi-
ties for roosting by a hole-nesting songbird, the Great
Tit. Firstly, we aimed to determine whether the ability
to detect predator chemical cues for roosting selection
is innate in birds. Roosting may be an important behav-
iour for overwinter survival, as one of the benefits of
sleeping in a cavity is a decrease in energetic costs
during cold nights (Walsberg 1986, Webb & Rogers
1988). Birds actively select warmer and thermally more
stable roosting places (Vel

v

ký et al. 2010). Furthermore,
birds also avoid roosting in cavities containing the
signals of predators (mammal fur and mangled feath-
ers) (Ekner & Tryjanowski 2008). Roosts also help to
decrease the risk of predation by owls, but increase the
risk of predation by mammals such as mustelids
(Dhondt et al. 2010). Differences in the costs and bene-
fits of roosting in different populations may have exert-
ed different selection pressures that have led to
population differences in the use of cavities during the
night (Dhondt et al. 2010). Dhondt et al. (2010)
showed that Blue Tits Cyanistes caeruleus from popula-
tions where owls are scarce and mammals abundant
did not use cavities for roosting, while birds from popu-
lations where the relative abundances of predators is
the opposite did. Therefore, if natural selection favours
the use of cavities while the costs of this behaviour are
lower than its benefits, it may also favour the ability to
assess the costs of roosting, such as the innate detection
of chemical cues of predators. Thus, we hypothesized
that the response to predator chemical cues may be
innate in birds, as it may be subjected to strong selec-
tion. We expect this because mustelid predators can be
hidden in cavities where visual detection is difficult,
and once the bird has entered a cavity containing a
predator survival is unlikely. Secondly, we aimed to
examine whether the personality of individuals influ-
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ences the response to predator chemical cues in order
to understand individual variability in anti-predatory
behaviour. In the Great Tit, birds from wild populations
can be placed along an axis ranging from slow to fast
explorers in a novel environment (Verbeek et al. 1994,
Drent et al. 2003). This is correlated with differences in
their reaction to novel objects (Verbeek et al. 1994),
aggressiveness (Verbeek et al. 1996), recovery time and
behaviour after lost contests (Verbeek et al. 1999),
foraging behaviour (Drent & Marchetti 1999, Marchetti
& Drent 2000) and reactions to stress (Carere & van
Oers 2004, Fucikova et al. 2009). Artificial selection
combined with cross fostering resulted in clear
evidence for a genetic basis of these traits (heritabilities
between 20 and 50%; Drent et al. 2003, van Oers et al.
2004b) and in natural populations variation in person-
ality was found to be under natural (Dingemanse &
Réal 2005) and sexual selection (van Oers et al. 2008).
The personality of birds is also related to the response
of birds to a risky situation, with fast Great Tits being
more prone to return to a risky feeding place than slow
individuals (van Oers et al. 2004a). Therefore, we
hypothesize that birds of different personality types
may also differ in their anti-predatory behaviour when
exposed to predator chemical cues, with slow birds
exhibiting a greater anti-predatory response than fast
birds. 

METHODS

Study species
We used 20 hand reared captive Great Tits (8 females
and 12 males) belonging to the 4th generation of a
bidirectional artificial selection program for fast and
slow (7 fast and 13 slow) exploratory behaviour (for
details see Drent et al. 2003). All birds were 1 year old.
Birds used in the experiments were naïve to predator
odour, as they were maintained in captivity since 10
days after hatching. Furthermore, nestboxes where
nestlings were reared during the first 10 days of their
life were frequently inspected and neither predation
events nor signals of predator visits were detected.

Birds were housed individually in cages of 0.9 m (L)
× 0.4 m (W) × 0.5 m (H), with wooden bottom, top,
side, and rear walls, a wire-mesh front, and three perch-
es. The bottom was covered with sawdust. They were
kept under natural winter daylight augmented with
fluorescent light tubes and provided with ad libitum
water, sunflower seeds, a commercial dry mixture
(proteins, trace elements, minerals, and vitamins), a
fresh mixture of raw heart and live mealworms. A week

before the experiment, the Great Tits were released into
the experimental aviary individually for one hour to
decrease stress due to novelty of the environment
during the experiment. Birds did not exhibit any sign of
stress and were healthy during the experiment. 

Experimental set up
The experiment was carried out during February and
March 2007. We performed the experiment in two
outdoor Y-shaped aviaries (Fig. 1). Aviaries were built
with mesh screens (mesh size 1.3 cm), with each
branch of the aviary measuring 2.5 × 2 × 2 m. The
central branch was closed 72 cm from the intersection
with the other two branches. Each aviary contained
food and water and two perches, one near each nest-
box. The perches were branches of trees, of similar
shape and number of small branches. One nestbox was
placed at the end of each of the branches of the aviary,
separated 4.4 m from each other (Fig. 1). One of the
nestboxes was a control and the other the experimental
nestbox. The control nestbox contained an ‘odourless
control’ (water). The experimental nestbox had one of
the following treatments impregnated in absorbent
papers: a) ‘predator’ (ferret scent) (see Amo et al.
2008) or b) ‘cologne’ (Eau de Cologne from Hema).

We prepared the odourless control treatment by
adding several drops of water to a clean absorbent
paper. We did this to resemble the level of humidity of
the papers containing the two other treatments, and
water has been widely employed as an odourless
control stimulus in studies on chemical detection (e.g.
Cooper & Burghardt 1990, Cooper 1998, Amo et al.
2004, 2008). We obtained predator odour by placing
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Figure 1. The aviary where the experiment was carried out.     

Downloaded From: https://bioone.org/journals/Ardea on 28 Nov 2024
Terms of Use: https://bioone.org/terms-of-use



clean absorbent papers inside the cage of a male Ferret
Mustela furo. Even though Ferrets are not natural pre-
dators of Great Tits, the scent (especially that produced
by an anal sac secretion used to mark the territory) is
very similar to those of other mustelids (Brinck et al.
1983) as Stoat Mustela erminea and European Polecat
Mustela putorius that include birds in their diets. This
similarity in odour may explain why ferret scent is
recognized and avoided by other species that are not a
natural prey of this mustelid, including birds (e.g.
Zhang et al. 2007, Amo et al. 2008). In our study area,
European Pine Marten Martes martes is present, and
predates Great Tits (pers. obs.).

The Ferret was housed in a 100 × 60 × 50 cm cage.
It had water and food (dry pellets for Ferrets) ad libi-
tum. We placed papers in the Ferret cage three days
before the experiment, to ensure odour collection.
When collecting papers daily for the experiment, we
selected wet papers containing fresh urine. This
method of odour collection has proven successful in
previous studies with hole-breeding passerines (Amo et
al. 2008). The cologne treatment was obtained by plac-
ing some drops of 50% diluted Eau de Cologne on
clean absorbent papers. We used cologne as an odorous
control that allows us to compare the behaviour of
birds when they find the odour of a predator inside the
nestbox or a new pungent odour without biological
significance.

We added the corresponding treatment to the nest-
boxes by introducing an absorbent paper (12 × 7 cm)
soiled with the corresponding odour in a plastic-mesh
cage completely covering the bottom of the nestbox. In
this way, the birds could not touch the paper. Further-
more, to avoid birds visually detecting the paper with
the treatment, we placed a clean absorbent paper on
this mesh cage. On each test day, we used new papers
and clean nestboxes. We cleaned the nestboxes with
water and soap. The location of treatments (control vs.
experimental) in the nestboxes of an aviary was
balanced, as well as the treatments in the aviaries
(cologne vs. predator). To control for a possible effect
of ambient conditions in the behaviour of birds, every
test day one of the aviaries contained the cologne treat-
ment and the other aviary contained the predator treat-
ment.

Birds were released in the aviary one and a half
hours before sunset to allow them to inspect the aviary
and the nestboxes before choosing one to spending the
night in. We filmed the behaviour of birds during one
hour with a video camera located 5 m in front of each
aviary. We recorded the nestbox visited for the first time
and the proportion of visits to the experimental nest-

box in each treatment. We defined a visit as when a bird
perched on the entry hole of the nestbox. We could not
record the behaviour of three birds due to problems
with the video camera. We determined which nestbox
the bird spent the night in by examining the presence of
faeces inside the nestboxes. This is a reliable method to
assess the use of a nestbox, since results of another
study, in which we forced birds to sleep in cavities
containing different scents, including predator scent,
show that birds always defecate during the night (L.
Amo, S.P. Caro and M.E. Visser, unpubl. data). We
thereby noted whether the birds used the control nest-
box, the experimental nestbox or whether they spent
the night outside any nestbox. We performed a repeat-
ed measures design: all birds were tested in the two
treatments (predator and cologne) in a balanced order.
The following morning, birds were captured and
returned to their cages. Only one trial was conducted
per bird per day, and there was at least one week
between trials with the same bird.

Statistical analyses
We analysed whether there were differences between
treatments and personality types in the nestbox of the
aviary visited first, as well as in the proportion of visits
to the experimental nestbox by using generalized linear
mixed models (GLMM; lmer in R package lme4) with
binomial errors and a logit link function. In order to
analyse the location where the bird spent the night, we
distinguished two dependent variables: (1) whether
the bird slept inside any nestbox or outside; (2) when
the bird used a nestbox, whether the bird slept inside
the control or the experimental nestbox. We analysed
whether both variables were affected by treatment and
personality with GLMM with binomial errors and a
logit link function. We included the interaction in the
models to test whether the response to the treatments
differed between fast and slow birds. We also included
the individual as a random factor. We used the software
package R 2.7.2 and STATISTICA for statistical analy-
sis. We calculated the power of a McNemar’s test
analysing the proportion of birds that slept outside or
inside the nestbox without including the personality
(Power = 0.87), and separately for each personality
type (Power: for slow birds = 0.74, for fast = 0.02). 

RESULTS

There were no differences in the behaviour of males
and females in any of the variables considered (P > 0.05
in all cases), or in the number of males and females
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that slept outside the nestbox or inside any nestbox in
the cologne (Chi-squared test: χ2

1 = 1.20, P = 0.27)
and predator treatments (χ2

1 = 0.59, P = 0.44). The
sexes did not differ in their choice of nestbox in the
cologne (χ2

1 = 0.03, P = 0.86) and predator treat-
ments (χ2

1 = 1.89, P = 0.17). Therefore, we did not
include the sex of birds in subsequent analyses. 

During the first hour of observed behaviour, all
birds visited at least one of the nestboxes. More birds
approached the experimental nestbox before the
control nestbox when the experimental box contained
predator scent (12 vs. 5) compared to when the experi-
mental box contained cologne scent (7 vs. 13) (lmer:
χ2

1 = 4.65, P = 0.03). There were no significant differ-
ences between personality types (lmer: χ2

1 = 0.54, P =
0.46), and also the interaction was not significant
(lmer: χ2

1 = 1.98, P = 0.16). The proportion of visits
to the experimental nestbox did not differ between
treatments (lmer: χ2

1 = 1.52, P = 0.22) or personality
type (lmer: χ2

1 = 0.14, P = 0.71). The interaction was
also not significant (lmer: χ2

1 = 1.69, P = 0.19).
When one of the nestboxes contained predator

scent, more birds did not use any nestbox and slept
outside than when one of the nestboxes contained
cologne (lmer: χ2

1 = 17.86, P < 0.0001; Table 1). There
were no differences in this behaviour associated with
the personality of the birds (lmer: χ2

1 = 0.02, P = 0.90)
and also the interaction between treatment and person-
ality was not significant (lmer: χ2

1 = 0.10, P = 0.75),
indicating that birds with different personality types did
not react differently to the presence of predator scent. 

Within birds that used a nestbox, there was no
difference in the number of birds that slept inside the
control or the experimental nestbox between treat-
ments (lmer: χ2

1 = 1.18, P = 0.28; Table 1), neither
did personality affect this choice (lmer: χ2

1 = 2.81,
P = 0.09). The interaction between treatment and
personality was not significant (lmer: χ2

1 = 1.35,
P = 0.25), indicating that birds of different personality
did not differ in their reaction to the treatment.

DISCUSSION

Our results provide evidence that birds can detect the
chemical cues of predators and use them to assess the
level of predation risk while selecting cavities to roost in.
When there was predator scent in one of the nestboxes,
more birds slept outside a nestbox. These results agree
with the experiment of Ekner & Tryjanowski (2008) in
natural conditions that shows that small hole nesting
passerines, mainly Great Tits, prefer to roost in control
nestboxes compared to nestboxes containing signals of
predators and predation (mammal fur and mangled
feathers). Our results are also in accordance with previ-
ous studies on Blue Tits (Amo et al. 2008) and House
Finches (Roth et al. 2008), which show that birds can
detect and use chemical cues of predators in a reproduc-
tive and a foraging context, respectively. We did not find
any significant effect of the cologne treatment on choos-
ing a nestbox for roosting, despite the fact that birds are
known to exhibit aversive responses to unknown odours
(Jones et al. 2002; reviewed in Roper 1999). Therefore,
this suggests that birds are responding to specific preda-
tor chemical cues but not to a new scent or a non-biolog-
ical scent, comparable to previous results using different
controls such as bird scent (Amo et al. 2008) or non-
predatory mammal scent (Roth et al. 2008). However,
we did not find differences in the use of nestboxes
between control and experimental nestboxes, which
suggests that birds perceived the whole aviary as a risky
area. This result may be explained because the mini-
mum home range of the European Polecat is 60 hectares
(Blanco 1998), and therefore, the presence of predator
chemical cues in one of the nestboxes may indicate an
elevated risk of predation at both boxes inside the
aviary. Our results provide the first evidence that the
chemical detection of predators is innate in birds, as it
has been previously found in other taxa (Turner et al.
2006, Sundermann et al. 2008).

Our results show that individual differences in the
response to predator chemical cues could not be
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Type Cologne treatment Predator treatment

Control Experimental Outside Control Experimental Outside
nest-box nest-box nest-box nest-box

Fast 4 2 1 1 4 2
Slow 10 3 0 6 2 5
Total 14 5 1 7 6 7

Table 1. Number of birds (by type, ‘fast’ or ‘slow’ birds) that spent the night in the control nest-box, experimental nest-box or outside
any nest-box in the ‘Cologne’ or ‘Predator’ treatments.       
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explained by the personality of the individual. This is
despite the results of a previous study that showed that,
in a foraging context, the personality of birds helped to
explain individual differences in anti-predatory behav-
iour, with slow Great Tits returning later to a feeding
place after being startled than fast individuals (van
Oers et al. 2004a). Birds were released in the aviary at
least one and a half hours before sunset, when they
usually explore potential sites for roosting (Vel

v

ký et al.
2010) and therefore, they had time to assess the risk of
predation by using chemical cues and to respond to it.
Furthermore, more birds approached the experimental
nestbox first when it contained predator chemical cues
than when it contained a control scent; i.e. they
inspected the predator-scented nestboxes before nest-
boxes containing a control scent. They thereby perched
on the hole of the nestbox, looking around and inside.
This inspecting behaviour may allow birds to identify
the odour source and assess predator presence. This
predator inspection behaviour has been described in
many prey fish (Brown & Dreier 2002), but birds are
also known to approach predators during nest defence
(Regelmann & Curio 1983). This result indicates that
Great Tits were able to detect the chemical cues of
predators from outside the nestbox, in agreement with
previous findings (Amo et al. 2008). Also, after the first
visit, both cologne and predator scented nestboxes
were visited similarly. The personality of birds did not
influence which nestbox was visited for the first time
and the proportion of visits to the experimental nest-
boxes or the choice between either sleeping inside or
outside one of the nestboxes. However, we may have
incurred Type II error due to the low sample size of
each personality type used in the experiment, therefore,
the low power of our test in relation to personality does
not allow us to draw strong conclusions. Thus, the
factors affecting the anti-predatory behaviour of birds
that perceived the chemical cues of predators remain
unclear. Further research is needed to try to disentangle
the causes of individual variation in the anti-predatory
responses of birds to predator chemical cues.
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SAMENVATTING

Er is weinig onderzoek verricht naar de rol die het ruikvermo-
gen bij vogels speelt om de aanwezigheid van roofdieren vast te
stellen. Vooral in het donker zouden vogels er veel baat bij
kunnen hebben als ze roofdieren kunnen ruiken. De auteurs
onderzochten of Koolmezen Parus major de keuze voor een
slaapplaats laten beïnvloeden door de geur van marterachtigen.
Tevens werd onderzocht of de reactie op de geur van roofdieren
aangeboren is. Ook werd nagegaan of exploratief gedrag (een
maat voor de persoonlijkheid van de vogels) hierbij een rol
speelt. In de experimenten met Koolmezen die in gevangen-
schap waren opgegroeid, bestond de keuze uit twee typen slaap-
plaatsen. Het ene type was een sterk ruikende nestkast die of
behandeld was met de geur van marterachtigen of met parfum,
het andere een niet-behandelde nestkast. Wanneer een van de
twee kasten naar een marter rook, vermeden de mezen beide
nestkasten. Parfum daarentegen schrikte de mezen niet af. De
conclusie wordt getrokken dat het vermogen om gebruik te
maken van de geur van roofdieren aangeboren is. De persoon-
lijkheid van de mezen speelt hierbij volgens de experimenten
geen aantoonbare rol. (DH)
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