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ABSTRACT: Diseased animals may exhibit behavioral shifts that increase or decrease their prob-
ability of being randomly sampled. In harvest-based sampling approaches, animal movements,
changes in habitat utilization, changes in breeding behaviors during harvest periods, or differential
susceptibility to harvest via behaviors like hiding or decreased sensitivity to stimuli may result in
a non-random sample that biases prevalence estimates. We present a method that can be used
to determine whether bias exists in prevalence estimates from harvest samples. Using data from
harvested mule deer (Odocoileus hemionus) sampled in northcentral Colorado (USA) during fall
hunting seasons 1996-98 and Akaike’s information criterion (AIC) model selection, we detected
within-yr trends indicating potential bias in harvest-based prevalence estimates for chronic wasting
disease (CWD). The proportion of CWD-positive deer harvested slightly increased through time
within a yr. We speculate that differential susceptibility to harvest or breeding season movements
may explain the positive trend in proportion of CWD-positive deer harvested during fall hunting
seasons. Detection of bias may provide information about temporal patterns of a disease, suggest
biological hypotheses that could further understanding of a disease, or provide wildlife managers
with information about when diseased animals are more or less likely to be harvested. Although
AIC model selection can be useful for detecting bias in data, it has limited utility in determining
underlying causes of bias. In cases where bias is detected in data using such model selection
methods, then design-based methods (i.e., experimental manipulation) may be necessary to assign
causality.

Key words:  Chronic wasting disease, harvest sampling, modeling, mule deer, Odocoileus hem-
ionus, prevalence, sample bias.

INTRODUCTION movements, or behavioral changes related
to the breeding season. Harvest samples
are often collected over a long enough
time period to evaluate bias in prevalence

estimates, but such evaluations are rarely

Sampling is a fundamental component
of many wildlife disease investigations.
Time and budget constraints frequently

prevent complete population census, and
consequently disease prevalence is rou-
tinely estimated from a sample. State and
federal agencies responsible for monitor-
ing wildlife health often rely on samples
from individuals harvested by hunters to
estimate disease prevalence (e.g., Schmitt
et al., 1997; Gallivan et al., 1998; Miller et
al., 2000). This approach, while cost effec-
tive, usually assumes that all individuals
are harvested at random. Sampling bias
may occur for a variety of reasons, includ-
ing differential susceptibility to harvest for
infected animals compared to uninfected
animals (Courchamp et al., 2000), seasonal
changes in habitat use, seasonal changes in
animal distribution due to migration

undertaken.

Chronic wasting disease (CWD), a
transmissible spongiform encephalopathy,
occurs naturally in some free-ranging mule
deer (Odocoileus hemionus) populations in
Colorado and Wyoming, USA (Miller et
al., 2000). Clinical signs of CWD include
initially subtle abnormal behavior that gets
progressively worse, as well as desensiti-
zation to external stimuli and poor body
condition in later stages of disease (Wil-
liams and Young, 1992). It follows that
CWD-infected mule deer could have a
higher or lower probability of harvest com-
pared to uninfected deer, depending on
disease state. For example, if infected deer
appear healthy but wander aimlessly or are
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TABLE 1.

JOURNAL OF WILDLIFE DISEASES, VOL. 36, NO. 4, OCTOBER 2000

Hunting seasons and data sampling periods for chronic wasting disease surveys in game manage-

ment units (9, 19, 191, and 20) in Larimer County, Colorado (Miller et al., 2000).

Rifle 1
ond sampling
period in year(i)

Archery/muzzleloading
15t sampling

Year(i) period in year(i)

Rifle 2
3rd sampling
period in year(i)

Rifle 3
4th sampling
period in year(i)

1996 9 Sep—1 Oct 12 Oct-18 Oct
1997 15 Aug-1 Oct 11 Oct-17 Oct
1998 1 Sep—-1 Oct 10 Oct-16 Oct

19 Oct-1 Nov
18 Oct-31 Oct
17 Oct-30 Oct

2 Nov-30 Nov
1 Nov-30 Nov
31 Oct—30 Nov

less sensitive to external stimuli, then they
may be oblivious to hunters and harvested
more easily than healthy deer, resulting in
a biased overestimate of CWD prevalence.
Conversely, deer in poor body condition
could be lethargic and remain in hiding or
could be avoided by hunters, resulting in
an underestimate of CWD prevalence.
These biases could be manifested as an in-
crease or decrease in the proportion of
CWD-positive deer harvested over time
within a sampling period, resulting in over-
or underestimation of prevalence.

Here we describe a model-selection
strategy to detect changes in CWD-prev-
alence estimates through time that may in-
dicate bias. We used data from harvested
mule deer sampled in northcentral Colo-
rado during fall hunting seasons 1996-98
and Akaike’s information criterion correct-
ed for small sample sizes (AICc) (Akaike,
1973; Burnham and Anderson, 1998) to
detect changes in CWD-prevalence esti-
mates through time that may indicate bias.
Information criteria model selection bal-
ances the trade-off between bias and pre-
cision of an estimator (Burnham and An-
derson, 1998) and has numerous advantag-
es over traditional methods of model se-
lection used in regression (McQuarrie and
Tsai, 1998). AICc is one of the most widely
used information-based model selection
procedures (Hurvich and Tsai, 1989). This
criterion is based on maximum likelihood
theory and is related to likelihood ratio
testing (Buckland et al., 1997; Burnham
and Anderson, 1998). Using AICc expands
likelihood ratio tests, which compare only
two models at a time, by allowing com-
parison and selection of a best approxi-
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mating model from a suite of models;
moreover AICc allows for comparison of
non-nested models. Under this approach,
biologically reasonable relationships be-
tween confounding variables, such as age
and sex, and independent variables, such
as treatment or sampling method, can be
combined in a priori hypotheses repre-
sented by models. Models incorporating a
time trend, with other necessary indepen-
dent variables, can be used to test for bias
in prevalence estimates.

MATERIALS AND METHODS

The Colorado Division of Wildlife (CDOW)
has been using harvest-based surveys to esti-
mate CWD prevalence since 1990 (Miller et al,
2000). Although a large number of game man-
agement units (GMUs) have been surveyed,
only a few areas were sampled consistently and
intensely from year to year. GMUs 9, 19, 191,
and 20 were the most intensively sampled dur-
ing 1996-98 (Miller et al., 2000). We use these
4 GMUs in our analyses because sample sizes
were large, CWD prevalence was relatively
high, and sampling efforts were intensive.
There were no fawns in our sample; thus all
analyses pertain to mule deer >1-yr-old.

Harvested deer were sampled during four
fall hunting seasons within each year during
1996-98 (Table 1). Portions of the medulla ob-
longata were collected from 1370 harvested
mule deer from GMUs 9, 19, 191, and 20 and
tested for CWD (Table 2) using methods de-
scribed by Miller et al. (2000). Briefly, forma-
lin-fixed medulla oblongatas, sectioned at the
obex, were examined for PrPres accumulations
by THC (Miller et al., 1993; Sparker et al.,
1997; O’Rourke et al., 1998) and lesions (Wil-
liams and Young, 1993; Spraker et al., 1997)
consistent with CWD infection. All IHC-posi-
tives and most -negatives were evaluated in-
dependently by histopathology. Pathologists
were blinded to samples” precise GMU origins.
Samples showing positive IHC reactions, with
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TABLE 2. Harvest sample sizes and number of deer
testing positive for chronic wasting disease during fall
hunting seasons (sampling periods) in game manage-
ment units ‘9, 19, 191, and 20’; Larimer County, Col-
orado, 1996-98.

Number positive for CWD/
Number tested for CWD;
all years summed

1st ond 3rd Ath
sampling sampling  sampling sampling
Sex period period period period
Male 1/34 9/271 30/464 19/293
Female 3/74 3/71 4/80 5/83

or without spongiform encephalopathy, were
classified as CWD-positive.

Because these data were collected through
time during four hunting seasons within each
year, prevalence estimates could be evaluated
for time trends that would suggest possible
bias. We developed five logistic regression
models that expressed our hypotheses about
bias in CWD prevalence and then used AICc
to pick the best approximating model for the
field data.

Whether an animal tested positive or nega-
tive for CWD was a binary response variable.
Logistic regression is commonly used to ex-
amine the relationship between a dependent
binomial variable, such as a positive or negative
CWD test, and independent continuous or cat-
egorical variables (Agresti, 1996). The kernel of
the log-likelihood of this regression model is:

4

521 [nplog(ps) + n,log(l = pg)l,
where S is the fall hunting season, with 1 being
the first season, 2 being the second season etc.
For each fall hunting season, n), is the number
of deer testing positive, n,, is the number of
deer testing negative, and py estimated propor-
tion of deer testing positive in the population
(estimated from the sample). The logistic or
logit transformation is given by:

logit(pg) = 10g<1 fspg) = Bo + B1(S),

which constrains the proportion of deer har-
vested with CWD per season to be 0 = p; =
1. Bo is the intercept and B, is the slope.

We used an intercept to model our first hy-
pothesis, that our harvest sample provided an
unbiased estimate of CWD prevalence. Here,
the proportion of CWD-positive deer harvested
represents the proportion of deer in the pop-
ulation having CWD, which remains constant
from season to season:
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logit(p) = B,

where p was the mean proportion of CWD-
positive deer harvested for all four hunting sea-
sons. To model our second hypothesis, that
there may be a bias in estimates of CWD prev-
alence, we used a time trend model. Here, the
estimated proportion of CWD-positive deer in-
creases or decreases through time:

logit(ps) = By + B1 (S),

where pg was the proportion of CWD-positive
deer harvested for hunting season S.

We included two additional models to make
sure that prevalence estimates were not affect-
ed by hunting method (archery/muzzleloading
versus rifle). Thus, in addition to the first two
models (Table 3, Model 1, 2), we similarly de-
veloped two models incorporating a possible
hunting method effect (Table 3, Model 3, 4).
Finally, we developed one model to account for
unexplained changes in proportion of CWD-
positive deer harvested (Table 3, Model 5).
Model 5 allows the proportion of CWD-posi-
tive deer to be different for each season, and
often is used for time series analyses. If model
5 is selected, we conclude that there were no
potential biases in prevalence estimates, but
high variation. The biological hypotheses tested
by respective models were: (1) the harvest sam-
ple was not biased: that is, it contained the
same proportion of CWD-positive deer as ex-
ists in the population; (2) the harvest sample
contained a bias; that is, the proportion of
CWD-positive deer harvested changed through
time, regardless of hunting method; (3) the
harvest sample contained a bias only during ri-
fle hunting seasons; that is, the proportion of
CWD-positive deer harvested changed through
time for rifle hunting; (4) deer with CWD were
differentially susceptible to method of harvest
(archery/muzzleloading versus rifle); and (5)
there was unexplained high variation in the sus-
ceptibility of CWD-positive deer harvested
from season to season.

We then used AICc to select which of these
five models best fit the data. AICc was defined
as:

2K(K + 1)

AICc = —2 In(l) +2K +
¢ n@) + n—K+ 1

where in ([) is the natural logarithm of the like-
lihood function evaluated at the maximum like-
lihood estimates for a given model, K is the
number of estimable parameters from that
model, and n is sample size. Models were
ranked and compared using AAICc (Leberton
et al., 1992, Burnham and Anderson, 1998).
For the suite of models being compared, A-
AICc was computed for each model as:
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TABLE 3.
deer infected with chronic wasting disease.

Description and structure of a priori models relating effects of hunting seasons on proportion of

Model Hypothesis description Model structure®

1 Intercept model: the proportion of deer harvested with CWD was Bo
constant from season to season.

2 Trend model: the proportion of deer harvested with CWD increases Bo + B1(S)
or decreases over the 4 hunting seasons.

3 Modified trend model: the proportion of deer harvested with CWD Bo + B1(R)
increases or decreases only over the 3 rifle hunting seasons.

4 Hunting method model: the proportion of deer harvested with CWD Bo + B1(M)
was different by hunting method, archer/muzzleloading versus rifle
hunting.

5 Time model: the proportion of deer harvested with CWD varies with- Bo + B1(R1) +

out a trend from season to season.

Ba(R2) + B3(R3)

4§ represents all hunting seasons (archery/muzzleloading, rifle 1, rifle 2, and rifle 3), R represents rifle hunting seasons, M
represents hunting method (archery/muzzleloading or rifle), and R1, R2, and R3 represent rifle 1, rifle 2, and rifle 3
respectively. The dependent variable, proportion of deer infected with CWD by season (p;) was in logit scale.

AAICCi = AICC,’ - AICCmin’

where AICc¢; was the AICc value for the ith
model and AICc,,;, was the minimum AICc
among the suite of models being compared.
Essentially, AAICc; is an estimate of the dis-
tance between the best approximating model
and all other models evaluated, with the best
model having the lowest AICc. Only models
AAICc = 3 were considered good candidates
for explaining patterns in the field data (Burn-
ham and Anderson, 1998); we considered mod-
els with AAICc > 5 as having little support for
explaining patterns in field data and models
with AAICc > 10 as having no support (Burn-
ham and Anderson, 1998). Parameter estimates
and AICc values were calculated using PROC
GENMOD (SAS Institute, 1993).

Although we could not include age in our
models because age data were only collected
during 1998, we used these data to evaluate
whether the age distribution of harvested deer
changed during the sampling period. Deer
were recorded as being 1-, 2-, or =3-yr-old.
Specifically, for 1998 data, we used a chi-square
test of independence to evaluate whether age
was independent of sampling period. We also
estimated proportion of older (=3-yr-old) deer
harvested per season.

RESULTS

Because males were harvested at much
greater rates than females, and because
the estimated sex ratio in GMUs studied
was about 30 males: 100 females, we an-
alyzed data separately for each sex. For
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our field data set, prevalence was not dif-
ferent between yr in sampled GMUs (Chi-
Square df = 1, n = 1,371, P = 0.642).
Consequently, we combined data across yr
in our analyses. For both sexes, the best
model was a 3-rifle season trend model
(Table 4, Model 3), which was AAICc > 9
than the next best model. Thus, we con-
sidered Model 3 as the only good model
for explaining patterns in the field data.
Additionally, we tested whether trends var-
ied between yr additively or multiplicative-
ly compared to the single trend model (no
yr effect) using likelihood ratio tests. Nei-
ther the additive model nor the multipli-
cative models were significantly better
than the single trend model for male data
x*df =1, P =032 and df = 2, P =
0.284 respectively) or for female data (x>
df =1, P =0.167 and df = 2, P = 0.278
respectively). Thus, a single trend repre-
sented prevalence for all three yr data
were collected (Fig. 1). For both sexes,
CWD prevalence increased through the ri-
fle seasons as indicated by the positive
slope (Fig. 1).

To compare AICc model selection to
more traditional methods, we also per-
formed a likelihood ratio test between the
intercept and 3-season trend model. From
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TABLE 4.
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Ranking of a priori hypothesized models relating effects of hunting seasons on proportion of deer

infected with chronic wasting disease ranked by Akaike’s information criterion corrected for small sample
sizes in game management units ‘9, 19, 191, and 20’; Larimer County, Colorado, 1996-98.

Model
Model structure and description? number AlICc AAICcP
Males:
Bo + B1(R): 3-rifle season trend 3 44771 0.00
Bo + B1(S): 4-season trend 2 456.73 9.03
Bo: intercept 1 457.84 10.14
Bo + B1(R1) + Bo(R2) + B3(R3): random variation between seasons 5 459.22 11.51
Bo + B1(M): archery/muzzleloading versus rifle hunting 4 459.31 11.60
Females:
Bo + B1(R): 3-rifle season trend 3 08.44 0.00
Bo: intercept 1 121.93 23.49
Bo + B1(S): 4-season trend 2 123.58 25.13
Bo + B1(M): archery/muzzleloading versus rifle hunting 4 123.81 25.37
Bo + B1(R1) + Bo(R2) + B3(R3): Random variation between seasons 5 127.65 29.20

4 S represents all hunting seasons (archery/muzzleloading, rifle 1, rifle 2, and rifle 3), R represents rifle hunting seasons, M
represents hunting method (archery/muzzleloading or rifle), and R1, R2, and R3 represent rifle 1, rifle 2, and rifle 3
respectively. The dependent variable, proportion of deer infected with CWD by season (P) was in logit scale.

b Models with AAICe =3 were considered good candidates for explaining patterns in field data, models with AAICc >5 had
little support, and models with AAICc >10 had essentially no support.

the intercept model, the mean prevalence
for all seasons was 5.4% (95% CI = 4.2—
6.6%) for males. The 3-season trend mod-
el was a better approximating model than
the intercept model for male data (x> df
=1, P < 0.001) and female data (x2 df =
1, P < 0.001), in agreement with AICc
model selection results.

Only two female deer were sampled in
the study area in 1998 so only male deer
were used in age analyses. For 1998, the
age of a harvested male deer was indepen-
dent of the season of harvest (x2 df = 4,
n = 433, P = 0.420). Specifically, the pro-
portion of older (=3-yr-old) male deer har-
vested did not significantly differ between
sampling periods as all confidence inter-
vals overlapped. The proportion of older
male deer harvested was 0.45 (95% CI =
0.35-0.55) in the 2nd sampling period,
0.55 (95% CI = 0.48-0.62) in the 3rd sam-
pling period, and 0.54 (95% CI = 0.45-
0.63) in the 4th sampling period. We did
not have age data for the first sampling
period.

DISCUSSION

We detected a within-yr trend, and
hence possible biases, in harvest-based
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CWD-prevalence estimates for both sex-
es, although the trend was steeper for
males. Field data strongly suggest that the
proportion of CWD-positive deer harvest-
ed increased across the three main sam-
pling periods (rifle seasons) of each yr
(Fig. 1) but not across yr. Bias in preva-
lence was greater for males than for fe-
males as indicated by the steeper within-
yr slope on male estimates. For males,
mean CWD prevalence was 5.4% when
data were pooled across all sampling pe-
riods. The pooled estimate of 5.4% is rel-
atively unbiased because it is within the
95% CI of prevalence estimates for any
one sampling period. There was negligible
bias in female estimates of prevalence
when the data were pooled over all sam-
pling periods. Consequently, we believe
that pooling data over the four sampling
periods resulted in relatively unbiased
CWD-prevalence estimates and increased
precision.

Although bias in CWD- prevalence es-
timates was small, the observed positive
trend in CWD prevalence is interesting.
CWD prevalence did not detectably in-
crease over a period (1996-98). Thus, for
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FIGURE 1. Observed (¢) and predicted (——)

proportion of chronic wasting disease-positive (A)
male and (B) female deer in game management units
(9, 19, 191, and 20) in Larimer County, Colorado,
sampled during 1996-98. Predicted values are based
on the best model from Akaike’s information criterion
corrected for small sample sizes, which was a 3-rifle
season trend model. S represents rifle-hunting sea-
sons and dashed lines represent bounds of 95% con-
fidence intervals on model predictions.

males the 2.9% increase in CWD preva-
lence over three sampling periods (Fig.
1A), which represents about seven weeks
in time, is notable. On the surface, the ob-
served trend appears most suggestive of
CWD-infected deer being slightly less sus-
ceptible to harvest than uninfected deer
during the early sampling periods, and be-
coming increasingly susceptible to harvest
as the hunting season progresses. This re-
sult is counterintuitive to our original be-
lief that, if anything, CWD-infected deer
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might be “easy targets” and thus be dif-
ferentially more susceptible to harvest
during the early sampling periods. Be-
cause the vast majority (97%) of test-pos-
itive deer detected in harvest surveys are
preclinical CWD cases (Miller et al.,
2000), hunter avoidance of sick individuals
seems an unlikely explanation for the ob-
served patterns. Rather than hunters
avoiding preclinical CWD deer, it may be
that preclinical deer exhibit behavioral
symptoms, such as failure to learn, that
make their susceptibility to harvest in-
crease through time. To the extent that
deer may learn to avoid hunters over the
course of several hunting seasons, vulner-
ability to harvest should be most uniform
during the first season each yr with selec-
tion against “slow learners” during each
successive season. It follows that the in-
creasing proportion of CWD-infected deer
in successive seasons could reflect reduced
learning capacity among CWD-infected
individuals rather than reduced vulnera-
bility to harvest during the early sampling
periods.

Although it is possible that the positive
trend was caused by increasing suscepti-
bility of CWD-positive deer to harvest
through time, other explanations are also
plausible. One possible cause for within-yr
trends is movement of deer between
GMUs in conjunction with behavioral
changes stimulated by the onset of the
breeding season. Data were pooled across
GMUs for analyses because sample sizes
were not large enough to accurately esti-
mate seasonal prevalence for each GMU.
When data were pooled across season,
CWD prevalence appears to differ among
the four GMUs (Miller et al., 2000); the
GMU with highest prevalence (9) also has
the most restrictive hunter access and low-
est overall harvest pressure (CDOW, un-
publ. data). Movements of CWD-positive
deer into areas where harvest was more
likely may have occurred, particularly as
the breeding season approached in early
November during the third rifle-hunting
season. As a result, the proportion of
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CWD-positive deer in the sample could
have increased between hunting seasons
due to breeding-related movements.

If breeding season movements of deer
from areas of high CWD prevalence
caused the increase in proportion of
CWD-positive deer during later sampling
periods, then we speculate that older (=3-
yr-old) male deer will show this effect
most acutely compared to other age or sex
classes. Our speculation stems from the
fact that older male deer, which are re-
sponsible for most of the breeding (Geist,
1981), may be more mobile, less wary, and
hence more susceptible to harvest as the
breeding season approaches. If this is true,
then the proportion of older male deer
harvested should increase as rut approach-
es, during sampling periods 3 and 4. Al-
though the proportion of older deer har-
vested increased approximately 10% from
sampling period 2 to 4, the increase was
not significant. However, because preva-
lence is low, movement of a few CWD-
positive male deer into areas where they
are more likely to be harvested could
cause the positive within-yr trend. We had
too few data on male CWD-positive older
deer (n = 24) to do viable analysis. How-
ever, in preliminary analysis, we found the
proportion of older CWD-positive bucks
harvested increased from 50 to 80% be-
tween sampling periods 2—4. Because of
our low sample sizes, this trend was not
significant. However, if future age data
bear similar trends, we may find that older
bucks, which have a higher prevalence of
CWD than younger bucks (Miller et al.,
2000), drive the within-yr trend in the
data. Thus, breeding season movements
remain a likely cause of the positive trend
in proportion of CWD-positive deer har-
vested.

Another explanation for the positive
trend in CWD prevalence is that disease
progression is unidirectional through time,
and observed trends may simply reflect
progression, perhaps seasonal (Miller et
al., 2000), in accumulation of detectable
prion deposits in infected deer. However,
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the timeframe for such progression seems
relatively short. Finally, variation in the
data due to unknown factors may have
produced this trend in the absence of bias
(Joiner, 1982).

Although we had a large enough sample
size (i.e., enough power) to detect bias, we
point out that bias cannot be detected by
AICc model selection, or any other model-
selection method, when harvest rates are
low due to insufficient data. Thus, failure
to detect a trend would not mean that bi-
ases did not exist in the data, only that
there was not a large enough sample size
to detect the trend. Additionally, if suscep-
tibility of CWD-infected deer was con-
stantly lower than uninfected deer, a trend
would not be detected. For example, if be-
havior were affected in CWD-positive
deer such that these deer were always in
hiding and had low probability of being
shot throughout the four-season sampling
period, then prevalence estimates would
always underestimate true prevalence.
Testing for this bias would require sam-
pling in a totally different method that
would capture infected and uninfected
deer with equal probability (Courchamp et
al., 2000).

Knowledge about differential suscepti-
bility of diseased animals to hunting, or to
any other control method, would be a
valuable management tool for the design
of disease eradication or control programs.
Although we detected a slight bias in
CWD-prevalence estimates from Colorado
harvest data, we hesitate to conclude that
differential susceptibility is truly the cause
in light of the confounding factors dis-
cussed previously. AICc model selection is
an initial step to detect bias in prevalence
estimates from harvest data. But because
of the many possible (and often unknown)
contributing factors, model-selection
methods may have limited utility for de-
termining the factor that caused bias in
prevalence estimates. If model selection
suggests bias, then design-based methods
(i.e., experimental manipulation) may be
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the necessary next step in determining the
cause of bias.

Although this methodology does not as-
sign causality to bias, testing for bias is an
important task in itself for several reasons.
First, while we found our sample to be rel-
atively unbiased. Other harvest samples,
that rely on one hunting season for prev-
alence estimates, may contain serious bias.
We caution against using one harvest sea-
son to estimate prevalence without initially
testing for bias by estimating prevalence
over several time periods. Second, identi-
fying temporal trends will allow design of
a sampling strategy to minimize bias, or
allow bias to be accounted for in estimates.
Third, detection of temporal prevalence
trends may provide information about sea-
sonal or annual patterns of a disease, illu-
minate epidemic properties of a disease, or
suggest biological hypotheses that could
further understanding of a disease (Cour-
champ et al., 2000). Fourth, managers
concerned with controlling a disease
through harvest may wish to know when
infected animals, for whatever reason, are
most or least likely to be harvested; trend
data could provide the manager with this
information. Finally, we point out that har-
vest sampling allows gathering of preva-
lence information at a low cost without
having to remove additional animals from
sampled populations.
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