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ABSTRACT: Many infectious diseases originating from, or carried by, wildlife affect wildlife
conservation and biodiversity, livestock health, or human health. We provide an update on changes
in the epidemiology of 25 selected infectious, wildlife-related diseases in Europe (from 2010–16) that
had an impact, or may have a future impact, on the health of wildlife, livestock, and humans. These
pathogens were selected based on their: 1) identification in recent Europe-wide projects as important
surveillance targets, 2) inclusion in European Union legislation as pathogens requiring obligatory
surveillance, 3) presence in recent literature on wildlife-related diseases in Europe since 2010, 4)
inclusion in key pathogen lists released by the Office International des Epizooties, 5) identification in
conference presentations and informal discussions on a group email list by a European network of
wildlife disease scientists from the European Wildlife Disease Association, or 6) identification as
pathogens with changes in their epidemiology during 2010–16. The wildlife pathogens or diseases
included in this review are: avian influenza virus, seal influenza virus, lagoviruses, rabies virus, bat
lyssaviruses, filoviruses, canine distemper virus, morbilliviruses in aquatic mammals, bluetongue virus,
West Nile virus, hantaviruses, Schmallenberg virus, Crimean-Congo hemorrhagic fever virus, African
swine fever virus, amphibian ranavirus, hepatitis E virus, bovine tuberculosis (Mycobacterium bovis),
tularemia (Francisella tularensis), brucellosis (Brucella spp.), salmonellosis (Salmonella spp.), Coxiella
burnetii, chytridiomycosis, Echinococcus multilocularis, Leishmania infantum, and chronic wasting
disease. Further work is needed to identify all of the key drivers of disease change and emergence, as
they appear to be influencing the incidence and spread of these pathogens in Europe. We present a
summary of these recent changes during 2010–16 to discuss possible commonalities and drivers of
disease change and to identify directions for future work on wildlife-related diseases in Europe. Many
of the pathogens are entering Europe from other continents while others are expanding their ranges
inside and beyond Europe. Surveillance for these wildlife-related diseases at a continental scale is
therefore important for planet-wide assessment, awareness of, and preparedness for the risks they may
pose to wildlife, domestic animal, and human health.

Keywords: Emerging disease, epidemiology, Europe, human health, livestock health, pathogen,
wildlife health.
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INTRODUCTION

In recent decades, there has been increas-
ing recognition of infectious diseases originat-
ing from, or carried by, wildlife. Most
emerging infectious diseases (EIDs) exist
‘‘within a host and parasite continuum be-
tween wildlife, domestic animal, and human
populations’’ (Daszak et al. 2000), and path-
ogen transmission across interfaces between
the three is frequently complex. Emerging
infectious disease events are predominantly
zoonoses (60.3% of EIDs); the majority of
these (71.8%) originate from wildlife (Jones et
al. 2008). Wildlife species can play a role in
the epidemiology of pathogens that can affect
domestic animal and human health by serving
as reservoir hosts. However, there are also
many pathogens, regardless of origin, causing
diseases that pose a significant threat to
endangered wildlife species and, ultimately,
to the conservation of biodiversity (Woolhouse
2002). Among these are distemper in the
Amur tiger (Panthera tigris altaica; Gilbert et
al. 2014), chytridiomycosis in frogs (Skerratt et
al. 2007), and squirrelpox in red squirrels
(Sciurus vulgaris; Thomas et al. 2003).

Several risk factors are believed to have
contributed to the worldwide increase of
EIDs in the last five decades (Jones et al.
2008). Drivers associated with globalization
(including travel, trade, and tourism) and
influence from features of the natural envi-
ronment (including environmental change
and climate change) were found to be
significant factors associated with infectious
disease threat events in Europe between 2008
and 2013 (Semenza et al. 2016). Furthermore,
there have been environmental changes that
alter, usually with an increasing trend, the
distribution and number of wild hosts and the
numbers of potential pathogen vector species
in Europe. These also facilitate pathogen
transmission, as observed for example by the
changes in the epidemiology of West Nile
virus (WNV) infection and leishmaniasis
(Semenza and Menne 2009) due to the
enlarged geographic ranges of their vector
hosts.

Europe is characterized by high human-
population densities over most of the conti-
nent, a history of extensive, polluting, heavy
industries, and intensive agriculture with high
livestock populations, and only a few temper-
ate areas remain unchanged by humans. As a
result, wildlife in Europe has seemingly been
pushed to the periphery in many cases. In
other cases, however, wildlife has had time to
adapt to the altered environment.

The epidemiology of infections in wildlife in
Europe can differ from that of similar wildlife
infections elsewhere in the world. For exam-
ple, the two subspecies of Francisella tular-
ensis important for disease in humans and
animals are F. tularensis subsp. tularensis
(type A) and F. tularensis subsp. holarctica
(type B). Type A is found solely in North
America while Type B is predominantly in
Asia and Europe (Hestvik et al. 2015).
Similarly, there are many species of hantavi-
ruses, with markedly different epidemiology
and clinical presentations, which have been
identified in different geographic regions
including Asia, the Americas, and Europe
(Jonsson et al. 2010). Bat lyssaviruses likewise
have very different host populations and
transmission dynamics in Europe (Fooks et
al. 2003; Johnson et al. 2010) than in the
Americas (Kuzmin et al. 2012). There are also
clear regional differences in pathogens or in
species susceptibility to pathogens. This has
been seen in the absence of mass mortality
from white nose syndrome in European bat
populations, in contrast to frequent mass
mortalities in North America (Puechmaille et
al. 2011). Thus, to understand wildlife disease
epidemiology in Europe, it is essential to
gather region-specific pathogen data.

Wildlife disease surveillance is essential to
identify changes in wildlife disease occurrence
and epidemiology and is considered an integral
part of a One-Health approach (http://www.
onehealthinitiative.com/), particularly where it
links with human and livestock health surveil-
lance. Surveillance is needed to identify new
and re-emerging pathogens, to identify possible
changes in host species and in vector ranges,
and to plan appropriate responses. In Europe
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there is significant interest in wildlife health
surveillance: more than 18,000 wild animals are
investigated in the framework of general
(passive) surveillance programs (by postmor-
tem examination and sampling) and more than
50,000 in targeted (active) surveillance pro-
grams annually, and both are deemed neces-
sary for detection of current and emerging
pathogens. Furthermore, wildlife scientists
involved in these investigations have set up
an active network to facilitate the rapid
exchange of information on EID events
(Kuiken et al. 2011). General wildlife disease
surveillance is important for the early detection
of new diseases. For example, the first cases of
African swine fever (ASF) in the four Europe-
an Union (EU) countries affected to date
(Poland, Lithuania, Latvia, and Estonia) were
detected by testing wild boars that were found
dead (Gavier-Widén et al. 2015). Targeted
surveillance of certain wildlife diseases (e.g.,
rabies, avian influenza, ASF, and classical
swine fever) are compulsory at the EU level.
Such wildlife disease surveillance information
is essential to conduct risk assessments for
pathogens that pose a threat to animal and
human populations, improve regional pre-
paredness, estimate the impact of these
pathogens on animal and human populations,
and identify areas that should be prioritized for
funding (Semenza et al. 2016).

We used data from wildlife health surveil-
lance in European countries to provide an
update on changes in the epidemiology of
selected infectious diseases in European
wildlife. Each of these pathogens was selected
because some or all of the following criteria
applied:

1) They were identified as important sur-
veillance targets in one or more recent
Europe-wide projects involving wildlife
disease surveillance (WildTech, ASF-
STOP, EMIDA-APHAEA, ANIHWA-
ECALEP [Emergence of highly patho-
genic CAliciviruses in LEporidae], Med-
VetNet [see definitions in Table 1]) in
which many of the authors have been
involved.

2) They were identified by the EU and
legislated for obligatory surveillance and
control by all the Member States (Eu-
ropean Commission 2017).

3) They were identified in recent (since
2010) literature on wildlife-related dis-
ease in Europe. For example, eight
diseases caused by pathogens included
here were also identified by Ciliberti et
al. (2015) from an expert risk analysis
review of wildlife pathogens in Europe
to be prioritized for surveillance—ra-
bies, bovine tuberculosis (bTB), brucel-
losis, bluetongue, Q fever, salmonellosis,
Crimean-Congo hemorrhagic fever
(CCHF), and transmissible spongiform
encephalopathies.

4) Of the 25 selected diseases, 21 are listed
by the Office International des Epizoo-
ties (OIE). This organization, also
known as the World Organisation of
Animal Health, lists the most significant
animal diseases globally and has two
series relevant to wildlife. The first series
is the OIE-Listed Diseases of Livestock
and Wildlife Globally (OIE 2018; Q
fever, bTB, rabbit hemorrhagic disease
[RHD], highly pathogenic avian influen-
za (HPAI), bluetongue, brucellosis,
CCHF, echinococcosis, rabies, tulare-
mia, West Nile fever, ASF, chytridiomy-
cosis, and amphibian ranavirus disease).
The second series includes diseases
affecting wildlife, for which the OIE
Working Group on Wildlife recom-
mends monitoring (OIE 2013; chronic
wasting disease [CWD], European
brown hare syndrome [EBHS], and the
diseases caused by filoviruses, hantavi-
ruses, multiple morbilliviruses, Salmo-
n e l l a e n t e r i c a s e r o v a r s , a n d
Batrachochytrium salamandrivorans).

5) The pathogens were repeatedly identi-
fied by a European network of wildlife
disease scientists from the European
Wildlife Disease Association through
formal presentations at meetings and
informal discussions on their group
email list (European Wildlife Disease
Association 2016)—as having an impor-
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tant impact on human and animal
populations.

6) There were published reports of changes
in the epidemiology of the pathogen
during the period of the review (2010–
16) such as for ASF, CWD, and RHD.
We have cited this literature in the
upcoming text.

We do not suggest that these are the most
important diseases in wildlife in Europe or
that those selected represent an exhaustive
list. While these categories are not mutually
exclusive, and many pathogens may have
impacts across multiple categories, we have
grouped these based on their predominant
impacts (see also Table 2).

By definition, surveillance means collect-
ing information for the purpose of taking
action, and it requires not only data collec-
tion but also data analysis and communica-
tion (Ryser-Degiorgis 2013). Herein, we have
compiled information from wildlife disease
surveillance activities at a continental scale.
This information can serve as a resource for
researchers, policy makers, public health
professionals, and animal health scientists
with which to better understand current and
EID risks, to inform policy, planning, and
preparedness, and to integrate these activi-
ties with corresponding initiatives in human
and livestock health.

WILDLIFE PATHOGENS WITH PRIMARY

IMPACTS ON PUBLIC HEALTH

Bat lyssavirus infections, by Daniel Horton

All 16 classified Lyssavirus species can
cause rabies, and there is good evidence that
bats are reservoir hosts for the majority of
them (Badrane and Tordo 2001; Fooks et al.
2014). Documented spillover into humans and
domestic animals in Europe demonstrates a
low but real public health risk. Until recently,
three Lyssavirus species had been reported in
European bats (Table 3). The majority of bat
rabies cases reported in Europe (average of 34
cases per year 2000–14) are due to European
bat lyssavirus type 1 (EBLV-1) in Serotine
bats (Eptesicus serotinus, Eptesicus isabelli-
nus; Schatz et al. 2013). Fewer than 30 cases
of European bat lyssavirus type 2 (EBLV-2)
infection have been reported, with more
restricted distribution in the UK and North-
ern Europe in Myotis daubentonii and Myotis
dasycneme (McElhinney et al. 2013). In
addition, one detection of the antigenically
divergent West Caucasian bat lyssavirus was
reported in 2002 in a Miniopterus schreibersii
from the Caucasus region of Russia (Botvinkin
et al. 2003; Kuzmin et al. 2006).

Since 2010, two additional lyssaviruses have
been detected in Europe. Bokeloh bat lyssa-
virus was detected in Germany in 2010 in a
Natterer’s bat (Myotis nattereri) and has
subsequently been detected twice in M.

TABLE 1. European Union (EU) wildlife disease programs and their priority diseases/pathogens.

EU program name Year/final report Diseases/pathogens included in program

WILDTECHa 2015 Mycobacterium bovis, Brucella spp., Salmonella spp.,
Echinococcus multilocuralis, avian influenza virus (HP),
rabies virus, Francisella tularensis, Coxiella burnetii (Q fever),
Batrachochytrium spp. (chytridiomycosis), bluetongue virus,
West Nile virus, hepatitis E virus, Orthohantavirus spp.,
European brown hare syndrome virus

ASF-STOPb Ongoing 2018 African swine fever virus

EMIDA-APHAEAc 2015 Echinococcus multilocularis, Francisella tularensis

MedVetNet WiREDZ SIGd 2009 Rabies, Orthohantavirus spp., tularemia

a Novel technologies for surveillance of emerging and re-emerging infections of wildlife (European Commission 2015).
b Understanding and combating African Swine Fever in Europe (ASF-STOP COST Action 2016).
c Harmonized approaches in monitoring wildlife population health and ecology and abundance (APHAEA 2015).
d Special Interest Group (SIG) in wildlife-related emerging diseases and zoonoses (WiREDZ). Med-Vet-Net 2008; Medical-Veterinary-

Network—A Network of Excellence for Zoonoses research funded by the EU.
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nattereri in eastern France, and Germany,
both in 2012 (Nolden et al. 2014). Also in
2012, genetic evidence for another putative
European lyssavirus, Lleida bat lyssavirus,
was detected in brain tissue from a sick
Miniopterus schreibersii in Spain (Arechiga
Ceballos et al. 2013). Although lack of viable
virus has precluded antigenic assessment of
this new virus, genetic analysis suggests it is
most closely related to an African virus, Ikoma
lyssavirus, against which current vaccines are
considered unlikely to confer protection
(Horton et al. 2014).

Spillover of European bat lyssaviruses into
other hosts is rare, but occurs. There have
been at least four reported cases of human
rabies caused by bat lyssaviruses in Europe
(EBLV-1 and EBLV-2) in addition to isolated
reports of rabies in domestic animals and
wildlife caused by EBLV-1 (Johnson et al.
2010; Schatz et al. 2013). There has been no
documented evidence for further transmission
of EBLV-1 between individuals in a non-bat
host population. In contrast, Rabies lyssavirus
in the Americas has repeatedly been trans-
mitted from bats into carnivores and then
continued to be transmitted between individ-
uals of the carnivore spillover host (Kuzmin et
al. 2012). Considerable interest has therefore
been directed at understanding viral dynamics
in bat reservoirs to assess risk of spillover into
other species, but many questions remain.
Experimental infections showed no evidence
for viral persistence or subclinical infection in
bats, yet serologic surveys demonstrate anti-
bodies in a high proportion of apparently
healthy bats (Johnson et al. 2008; Freuling et
al. 2009), suggesting infection dynamics may
differ between bats and carnivores. Longitu-
dinal surveillance and disease dynamics mod-
els are improving our understanding of how
lyssaviruses are maintained (Schatz et al.
2013). A crucial consideration in public
education about bats, and in planning surveil-
lance programs, is that all bat species are
protected in Europe. Therefore, surveillance
activities should involve close collaboration
between conservationists, biologists, and pub-
lic health professionals (Racey et al. 2013).

Coxiella burnetii infection, by Francisco Ruiz-Fons

Q fever is a reproductive disease of
ruminants caused by Coxiella burnetii, which
displays one of the widest host ranges of
known pathogenic bacteria. Coxiella burnetii
can reproduce in many mammalian, avian,
reptilian, and arthropod species. However, a
definitive role for wildlife in the epidemiology
of Q fever in livestock and humans has not
been established.

The last decade witnessed one of the largest
reported human Q fever outbreaks. It oc-
curred in the Netherlands and was linked to
increases in farming of dairy goats (Capra
aegagrus hircus; Roest et al. 2011), resulting
in a very high density of farmed goats in a
small region. However, other European coun-
tries have also reported annual cases, some of
unknown origin. Whether wildlife may be
implicated in transmission of C. burnetii to
humans and livestock in Europe is poorly
understood. In Europe, C. burnetii is present
in wild and zoo ungulates, carnivores in
zoologic collections, rodents, lagomorphs,
and wild birds. However, reports are geo-
graphically scattered, and little extensive
surveillance has been done to identify the
role of any of these species in C. burnetii
dynamics. Two recent studies on European
rabbit (Oryctolagus cuniculus) and red deer
(Cervus elaphus) populations in Spain and
Portugal (González-Barrio et al. 2015) deter-
mined that C. burnetii can replicate in, and be
shed by, both of these species. Coxiella
burnetii circulates in northern England/south-
ern Scotland at medium-to-high antibody
prevalences in small mammals (bank vole,
Myodes glareolus; field vole, Microtus agres-
tis; and wood mouse, Apodemus sylvaticus)
and red foxes (Vulpes vulpes; Meredith et al.
2015). Recently, Iberian ibex (Capra pyrena-
ica) from southern Spain were also deter-
mined to be susceptible to C. burnetii
infection (Márquez et al. 2014).

We will likely see increasing evidence that
wildlife species participate in the dynamics of
C. burnetii infection in livestock and humans.
However, this increase in evidence will not
necessarily suggest an increase in geographic
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or host ranges; rather, it may simply be a
consequence of increasing and more accurate
detection and assessment of the role of
wildlife in the spread and maintenance of this
pathogen. Future research on C. burnetii
dynamics will likely underscore the complex
epidemiology and subsequent difficulties in
the control of C. burnetii infection in livestock
and humans in Europe.

Crimean-Congo hemorrhagic fever Orthonairovirus

infections, by Francisco Ruiz-Fons

Crimean-Congo hemorrhagic fever is
caused by a zoonotic, vector-borne Orthonair-
ovirus in the family Nairoviridae. The hem-
orrhagic syndrome caused by Crimean-Congo
hemorrhagic fever Orthonairovirus (CCHFV)
affects only humans, and the disease is of
concern as an emerging zoonotic threat on the
European continent and in the Middle East
(Mansfield et al. 2017).

Crimean-Congo hemorrhagic fever Ortho-
nairovirus circulates enzootically in a wild
cycle involving several mammalian species
and ticks; mainly, but not exclusively, ticks in
the genus Hyalomma. Infection with CCHFV
has been detected in a range of wildlife (hares
[Lepus europaeus], hedgehogs [Erinaceus
europaeus], other small mammals) and do-
mestic animals (cattle [Bos taurus], goats
[Capra hircus], sheep [Ovis aries], dogs
[Canis lupus familiaris]; reviewed by White-
house [2004]). Many additional wildlife spe-
cies have been found with antibody to
CCHFV. However, although the pathogen
was discovered in 1944, there is no accurate
information on the relationship between

CCHFV and the most probable reservoir
hosts in Europe (Spengler et al. 2016). Two
scenarios are described in Europe, one in
eastern Mediterranean countries and one
(poorly understood) in the western Mediter-
ranean (Estrada-Peña et al. 2012a). The
CCHFV strains circulating in the eastern
Mediterranean are public health concerns
due to their high virulence. In western
Mediterranean Europe, however, only
CCHFV strains of African origin (and as-
sumed to have low virulence) have been
described (Estrada-Peña et al. 2012b). How-
ever, on 25 August 2016, a 62-yr-old man
reporting a recent tick bite in central Spain
died of CCHF (ProMED-Mail 2016). A nurse
infected with CCHFV while caring for the
patient recovered.

Wildlife may play several roles by serving as
a host in which CCHFV replicates, serving as
a source of infection for ticks, and by
supporting replicating tick populations.
Changes in wildlife population dynamics
modulate tick population dynamics at local
and regional scales, so they are considered
important drivers of CCHFV infection prev-
alence in ticks (Estrada-Peña et al. 2012a).
Wildlife community assemblages favoring
circulation of CCHFV should therefore be
identified for accurate mapping of risk factors
(Estrada-Peña et al. 2013) and to predict
future trends in CCHF in Europe to inform
the development of a preventive strategy.
There is an urgent need to involve wildlife
disease researchers, wildlife ecologists, ento-
mologists, and epidemiologists to address the

TABLE 3. Five bat lyssaviruses detected in Europe.a

Virus species Bat species most frequently associated Geographic area detectedb

European bat 1 lyssavirus Eptesicus serotinus, Eptesicus isabellinus Central and Southern Europe

European bat 2 lyssavirus Myotis daubentonii, Myotis dasycneme Northern Europe and UK

Bokeloh bat lyssavirus Myotis nattereri Central/Western Europe

West Caucasian bat lyssa virus Miniopterus schreibersii Eastern Europe (Russia)c

Lleida bat lyssavirus Miniopterus schreibersii Southern Europe (Spain)c

a Data from Wise et al. (2017).
b Does not indicate absence in other areas.
c One isolation only.
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many unanswered questions on CCHFV
dynamics.

Echinococcus multilocularis parasitism, by Erik O.

Ågren

Echinococcosis, or hydatid disease, is
caused by infection with Echinococcus multi-
locularis, a 3-mm intestinal cestode parasite,
primarily of red foxes but also more recently
of raccoon dogs (Nyctereutes procyonoides)
and occurring in many, but not all, European
countries. The multicystic larval stage causes
severe organ lesions in the rodent intermedi-
ary host (Fig. 1). Echinococcosis is a zoonosis
and, as accidental intermediary hosts, infected
humans develop alveolar echinococcosis after
ingesting eggs of the parasite (Conraths and
Deplazes 2015).

It is difficult to establish accurate preva-
lences of E. multilocularis in wildlife through-
out Europe because surveillance methods
across European countries are inconsistent.
The number of human cases of alveolar
echinococcosis gives an approximate indica-

tion of which countries are predominantly
affected. Echinococcus multilocularis is
spreading to western and northern Europe
from eastern and central areas, where the
parasite has long been present with higher
prevalence. The western front of expansion in
the past 5 yr has been in the Netherlands and
France, probably as a result of red fox
movements. Northern spread is evidenced
from the finding of E. multilocularis in
Denmark and Sweden (Wahlström et al.
2012). In suburban areas with coexistence of
relatively high numbers of red foxes and
humans, there is increasing risk of human
exposure when a fox population is infected
with E. multilocularis, especially in regions
where awareness of the disease is low.

Infection with E. multilocularis is expected
to continue to spread throughout Europe,
affecting countries previously free of the
pathogen. This is due to the natural move-
ments of endemic wildlife, such as the red fox,
and expansion of invasive species such as
raccoon dogs. Additionally, translocation of

FIGURE 1. Fixed liver from an Eurasian beaver (Castor fiber) with Echinococcus multilocularis (confirmed by
laboratory testing) in July 2010, with parasitic cysts clearly visible; Animal Plant and Health Agency, Langford
Veterinary Investigation Centre, Langford, Somerset, England. The first and only case of this pathogen to have
occurred in Britain. Photograph courtesy of Alex Barlow, Animal Plant and Health Agency, Diseases of Wildlife
Scheme (DoWS).
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wildlife, as occurred with the first introduction
of E. multilocularis in England in Eurasian
beaver (Castor fiber) in 2010 (Barlow et al.
2011; Fig. 1), or transportation of other hosts
such as domestic dogs (Umhang et al. 2014)
between countries, may result in new regions
of infection. Eradication of the disease is not
feasible, but lowering the prevalence in the
main definitive hosts can be achieved by
strategic regional red fox deworming cam-
paigns (Comte et al. 2013). This can be
anticipated in several European countries in
the future as a method to decrease the risk of
human disease, particularly from contact with
the wildlife hosts of the parasite (Piarroux et
al. 2013; Gottstein et al. 2015).

Hantavirus infections, by Daniel Horton

Hantaviruses (genus Orthohantavirus, fam-
ily Hantaviridae) are maintained in rodent
and insectivore populations nearly worldwide,
with little or no clinical effect on the host
(Kruger et al. 2015). Zoonotic hantaviruses
reported in Europe include Puumala virus,
carried by bank voles (Myodes spp.), and
Dobrava-Belgrade and Saaremaa viruses car-
ried by field mice (Apodemus spp.). Trans-
mitted to humans through inhalation of
aerosolized excreta, bite of infected animals,
or contact with contaminated surfaces, these
viruses can cause a range of clinical syn-
dromes, including hemorrhagic fever with
renal syndrome (HFRS), with a variable case
fatality rate (,1% for Saaremaa and Puumala
virus, up to 12% for Dobrava-Belgrade;
Vaheri et al. 2013). More than 3,000 HFRS
cases were reported annually in 2000–09, with
most cases from parts of Northern Europe
(Finland, Sweden, Norway), Central Europe
(Germany, Belgium, and France), and the
Balkan countries (Vaheri et al. 2013; Avsic
Zupanc et al. 2014). This apparent trend of
relatively high numbers of cases has continued
since 2010, though accurate estimates are
confounded by variation in surveillance inten-
sity. In addition, some countries report high
antibody prevalence despite low numbers of
HFRS cases. Cyclical patterns of variable
length (2–4 yr), with epidemics interspersed

with periods of reduced numbers of cases,
appear linked to rodent population density,
possibly driven by climatic factors and food
availability, but regional variation in the effect
of climate on these outbreak patterns impairs
the ability to predict epidemics using climatic
factors (Roda Gracia et al. 2015).

Another zoonotic hantavirus, Seoul virus,
has a global distribution thought to be due to
spread of one of the reservoirs, the brown rat
(Rattus norvegicus), through international
shipping. Seoul virus has recently been
detected in wild rats in the UK, France, and
the Netherlands (Dupinay et al. 2014; Verner-
Carlsson et al. 2015). Tula virus (detected in
Microtus spp.) has also been associated with
isolated reports of human disease, but is
considered to have lower zoonotic potential,
and a related novel hantavirus, Tatenale virus,
was recently detected in a field vole (Microtus
agrestis) in the UK through targeted surveil-
lance (Pounder et al. 2013). Several hantavi-
ruses not associated with human disease have
been detected in insectivores including: Asik-
kala virus in the Eurasian pygmy shrew (Sorex
minutus), Laihia virus in the Eurasian water
shrew (Neomys fodiens), and Seewis virus in
the common shrew (Sorex araneus). More
hantaviruses have been detected in nonrodent
hosts, including bats, but their zoonotic
significance is unknown. In addition, cases of
hantavirus infections in humans acquired
outside of Europe pose a potential but
unqualified threat (Kruger et al. 2015). With
improving diagnostic tests and increased
surveillance, it is likely that the number of
hantaviruses, and their known hosts and
geographic ranges in Europe, will continue
to increase.

Hepatitis E virus infections, by Frederik Widén

Hepatitis E is caused by Hepatitis E virus
(HEV), a small, nonenveloped, single-strand-
ed, positive-sense RNA virus in the Hepevir-
idae, with worldwide distribution. Current
taxonomy (International Committee on Tax-
onomy of Viruses 2014) divides the family into
two genera, Orthohepevirus with species A–D
and Piscihepevirus with one species (Cut-
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throat Trout virus). Orthohepevirus is pro-
posed to contain six or seven genotypes (gt).
Genotypes 1 and 2 of Orthohepevirus A infect
only humans and will not be described here.
Genotypes 3 and 4 are zoonotic (Lu et al.
2006). Avian HEV (AHEV) is not zoonotic,
infecting only poultry (Huang et al. 2004). The
zoonotic capacity of other HEV species is
unknown. The main wildlife host for gt 3 and
4 is the wild boar (Sus scrofa); for AHEV it is
unknown. Disease due to HEV has been
documented in humans (gt 1–4) and poultry
(AHEV), with mild or subclinical signs in
other animals.

The known host range of HEV has expand-
ed dramatically since 2010; at that time it had
been described in humans, domestic pigs (Sus
scrofa domesticus), red deer, European roe
deer (Capreolus capreolus), European rabbits,
and wild boars as well as in several non-
European animal hosts (Pavio et al. 2010).
Since 2010, it has also been detected in brown
rats, black rats (Rattus rattus), domestic
ferrets (Mustela putorius), farmed mink
(Mustela lutreola), Old World leaf-nosed bats
(Hipposideridae), vesper bats (Vespertilioni-
dae), and European moose (Alces alces)
(Johne et al. 2014). Hepatitis E virus has also
been detected in feces of red foxes (Bodewes
et al. 2013b) in the Netherlands, but it is
unclear whether it was a true infection or if
the virus originated from ingestion and
subsequent excretion of infected prey. Serol-
ogy suggests that HEV infects other animal
species, but this needs to be confirmed by
detection of virus or viral RNA. The detection
of HEV in various animal species raises the
question of its zoonotic capabilities. Hepatitis
E virus in rabbits, for example, is closely
related taxonomically to gt 3, but forms a
separate clade in phylogenetic trees. Never-
theless, rabbit HEV was detected in a human
patient in France (Izopet et al. 2012),
suggesting that these taxonomic similarities
may also confer similar infectivity. Other
recently detected HEV species are distantly
related to gt 1–4. For these new species, the
zoonotic potential is uncertain. There is
evidence that the same animal species can
be infected with more than one HEV species.

Brown rats can be infected by an HEV that
seems to be specific for rats, but also by gt 3.
Therefore, it is important to be aware that
recombination could occur in rats, and this
may also be possible in other animals.

In the next decade, we anticipate that new
HEV species will be detected in other animal
hosts. With the expanding number of host
species and HEV variants, taxonomy has had
to be adapted. The zoonotic potential of newly
detected HEV species is an important con-
cern, but is difficult to assess. We hope that
future research into the molecular biology of
HEV will identify virulence markers and
determine host range. This will improve our
understanding of HEV circulating in wild
animals and the potential virulence for
humans.

Filovirus infections, by Daniel Horton

Viruses in the family Filoviridae are infa-
mous as the causative agents of hemorrhagic
fever in humans, with mortality rates of up to
90%. Zaire ebolavirus and Marburg marburg-
virus (MARV) are the most frequently report-
ed species and have been associated with
sporadic outbreaks of disease in humans and
nonhuman primates in Equatorial Africa. The
recent outbreak of human Ebola virus disease
in West Africa was unprecedented in size and
distribution in comparison to previous out-
breaks (Mari Saez et al. 2015). Although the
level of supporting evidence varies between
virus species, bats are considered the likely
reservoir hosts for the filoviruses (Olival and
Hayman 2014). Since the initial detection of
Ebola virus RNA in three bat species in
Africa, antibodies have been detected in at
least nine species and, when selected species
have been experimentally infected, they have
not succumbed to disease but have shed virus
(Olival and Hayman 2014). Longitudinal
studies on the cave-dwelling Egyptian fruit
bat, Rousettus aegyptiacus, in Uganda provide
compelling evidence of that species being a
MARV reservoir (Amman et al. 2012), but
similar support does not yet exist for Zaire
ebolavirus (Olival and Hayman 2014). Recent
circumstantial evidence has implicated an

REVIEW 13

Downloaded From: https://bioone.org/journals/Journal-of-Wildlife-Diseases on 28 Mar 2024
Terms of Use: https://bioone.org/terms-of-use



insectivorous bat species (Mops condylurus)
as the primary source of the West African
outbreak and, although antibodies have pre-
viously been detected in this species, no
evidence for virus or antibodies was detected
in bats from the location of the index human
case (Mari Saez et al. 2015).

Until recently, and with the exception of the
apparently less-pathogenic Reston ebolavirus
in Asia, it was believed that the filoviruses
were restricted to Africa. European interest
has mostly been directed at the risk of
imported cases, rare laboratory infections,
speculation about historical outbreaks, and
preparedness for a perceived threat of delib-
erate misuse as a bioterrorist agent (Simons et
al. 2014; Wolf et al. 2014). Imported cases
include the original isolation of MARV in
African green monkeys (Chlorocebus ae-
thiops) imported from Uganda in 1967,
contraction of MARV by a Dutch tourist
through direct contact with bats in Africa and,
more recently, imported cases from West
Africa (Wolf et al. 2014).

However, in 2011, the novel filovirus
species Lloviu cuevavirus was detected
through investigation of a mass die-off of
Spanish Schreiber’s bats, Miniopterus schrei-
berseii (Negredo et al. 2011). The bats had
pathology consistent with viral pneumonia,
but causation of clinical disease has not been
proven, and there were no associated reports
of human disease. This discovery of a
genetically distinct filovirus in Europe and
the detection of ebolavirus antibodies in
insectivorous bats in Asia supports the impor-
tance of more systematic surveillance in
European bats to be aware of the potential
emergence and spread of these dangerous
zoonotic pathogens.

Tularemia, by Gete Hestvik

Tularemia is caused by the bacterium
Francisella tularensis subsp. Holarctica and,
with the exception of a few countries, it is
distributed widely in Europe. Several trans-
mission routes are possible via a variety of
vectors such as mosquitos and ticks, direct
contact with an infected animal, inhalation

of bacteria-containing dust, or ingestion of
contaminated food or water. Until 2010,
tularemic disease had only been described
in European brown and mountain hares
(Lepus europaeus and Lepus timidus, re-
spectively), European rabbits, and a few
small rodents (Hestvik et al. 2015). Howev-
er, in 2013 tularemia was described in a
stone marten (Martes foina; Origgi et al.
2013b). Recently, F. tularensis, or antibod-
ies against it, was detected in a wider range
of wildlife in Europe including several
additional small rodent species, red foxes,
wild boars, and raccoon dogs (Kuehn et al.
2013).

In 2013, tularemia re-emerged in the
Netherlands in the European brown hare
(Rijks et al. 2013) after 60 yr during which no
cases had been reported in that country.
Because tularemia is a well-established dis-
ease that can affect a wide range of hosts, it is
likely to expand to involve more countries and
animal species. Geographic expansion across
Europe can also be expected in relation to
climate change because vectors dependent on
a warmer climate may establish in new areas
and contribute to an increase in transmission
of the bacteria (Vonesch et al. 2016). Disease
modelling has predicted a prolongation of
outbreak durations in endemic areas due to
increased temperatures (Ryden et al. 2009).
The proposed geographic expansion, longer
outbreak periods, involvement of more animal
species, and spread of vectors to new areas
could, together, result in a higher human
incidence of tularemia.

Leishmania infantum infection, by Ezio Ferroglio

Leishmaniasis is a complex of mammalian
diseases caused by diphasic protozoans of the
genus Leishmania, which complete their life
cycle in two species: a phlebotomine sand fly
vector and a mammalian host (Ferroglio et al.
2005). Leishmania infantum is traditionally
endemic in the Mediterranean basin but, in
the last decade, has also spread in regions of
Europe with a continental climate (Ferroglio
et al. 2005; Biglino et al. 2010). Traditionally,
the domestic dog has been considered the
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main reservoir, but the possible role of
wildlife as a reservoir has been suggested,
particularly for wild carnivores (Millán et al.
2014), although there is also evidence that
lagomorphs could maintain the parasite in a
wildlife cycle.

Between 2009 and 2012, a leishmaniasis
outbreak associated with lagomorphs oc-
curred in the southwest of the province of
Madrid (Spain), where at least 446 human
cases were reported (Arce et al. 2013). In the
same area, Iberian hares (Lepus granatensis)
were infected by sand flies (Phlebotomus
perniciosus; Molina et al. 2012), which are
the main vector in most of the areas affected
in Europe (Ferroglio et al. 2005; Durán-
Martı́nez et al. 2013). A high prevalence of
infection was seen in lagomorphs, with a
mean of about 50% in Spain (Ruiz-Fons et al.
2013) in Iberian hares and European brown
hares. Infection in lagomorphs has also been
found in a continental area of Northern Italy
with a high prevalence in European brown
hares, wild European rabbits, and Eastern
cottontail rabbits (Sylvilagus floridanus; E.F.
unpubl.). On Montecristo Island in Italy,
rodents such as black rats also maintain
infection in the absence of carnivores (Zanet
et al. 2014).

The use of pyrethroids is an effective option
to control the spread of infection in dogs (the
main reservoir), which decreases overall risk
of infection (Ferroglio et al. 2008). However,
wildlife reservoirs could negatively affect
efforts to control the spread of infection and
increase the risk of transmission to humans. In
Europe, P. perniciosus is one of the most
widespread sand flies, and is present in
domestic/urban as well as wild areas, so it
can easily maintain Leishmania infection in
wild hosts and may be instrumental in
spillover to domestic animals and humans, as
the previously described Madrid outbreak
demonstrated.

The role of wildlife in the circulation of
Leishmania, and the spread of the infection to
new areas of Europe with a continental
climate, will increase the impact of this
neglected parasite on public health.

Rabies virus infection, by Daniel Horton

The elimination of fox rabies in Western
Europe through extensive oral rabies vaccina-
tion (ORV) programs in the latter 20th
century was an unprecedented achievement
in wildlife disease control (Freuling et al.
2013; Muller et al. 2015). Despite this initial
success, wildlife rabies persists in parts of
Europe, with over 2,000 wildlife cases report-
ed in the wider European region in 2015
including cases in several EU member states
(World Health Organization [WHO] 2015).

Wildlife rabies in the EU: During 2010–15,
numbers of reported wildlife rabies cases in
the EU declined due to continued ORV
(Muller et al. 2015). Baltic states reported
no cases in wildlife in 2013, and the eastern
EU member states of Romania, Poland, and
Hungary reported relatively consistent but
low numbers. Fewer than 150 wildlife rabies
cases were reported across all EU member
states in 2015 (WHO 2015). Challenges to
complete elimination of wildlife rabies include
bureaucratic and administrative obstacles,
maintaining funding support, and coordinated
vaccination across borders with countries
where wildlife rabies persists (Muller et al.
2015).

In 2008, fox rabies was detected in Italy for
the first time since 1997. The outbreak was
controlled by ORV and, by 2012, Italy was
again rabies free. However, in late 2012 rabies
was reported in Greece for the first time since
1987, and cases were reported each year until
2015 (Tsiodras et al. 2013). Epidemiologic
studies of rabies dynamics have suggested
westward and southward spread in the Balkan
peninsula. Surveillance varies by country and
over time, meaning that although these recent
epidemics are likely reintroductions, there is
potential for undetected, low-level rabies
persistence in some areas (Johnson et al.
2007; McElhinney et al. 2011; Picard-Meyer
et al. 2013; Muller et al. 2015).

Wildlife rabies in countries bordering the
EU: Reported rabies cases in countries
bordering the EU have been declining but
remain high; for example, the Russian Feder-
ation, Ukraine, and Turkey collectively re-
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ported .1,500 cases of wildlife rabies in 2013
(WHO 2015). These regions, and countries in
North Africa, the Middle East, and the
Caucasus, also have dog rabies, suggesting
complex disease epidemiology and further
challenges for control (Horton et al. 2015).

Other wildlife reservoirs: After introduction
into Western Russia for hunting in the 1920s,
raccoon dogs spread westward and established
in Eastern and Central Europe. Raccoon dogs
are the second most frequently reported
wildlife species with rabies in Europe (after
red foxes). Fortunately, ORV strategies de-
signed for foxes appear effective against
raccoon dogs (Muller et al. 2015). There are
also flourishing populations of North Ameri-
can raccoons (Procyon lotor), which were
introduced into Germany and the Caucasus
(Timm et al. 2016), and of small Indian
mongooses (Herpestes auropunctatus) in Cro-
atia (Barun et al. 2010). Both species are
rabies reservoirs in other regions (North
America and the Caribbean, respectively)
and, although there have not been confirmed
cases of rabies in these European populations,
if rabies were introduced these species could
serve as additional reservoirs and the patho-
gen could prove challenging to control (Vos et
al. 2012; Zieger et al. 2014).

Salmonella infections, by J. Paul Duff

Salmonella spp. are Gram-negative bacteria
in the family Enterobacteriaceae that infect
and cause disease in humans, livestock, pets,
and wildlife. Some Salmonella spp. appear to
be host-adapted to wild species in Europe,
which serve as reservoirs, including S. enterica
subsp. enterica ser. Enteritidis (phage type
11) in hedgehogs (Erinaceus europaeus; Gaf-
furi and Holmes 2012) and S. enterica subsp.
enterica ser. Typhimurium (S. enterica ser.
Typhimurium) in garden passerines (Lawson
et al. 2014). Chiari et al. (2013) have also
recorded S. enterica ser. Typhimurium and S.
enterica subsp. diarizonae and subsp. houte-
nae infections in wild boar. Similar Salmonella
spp. may be found in livestock and wildlife
sharing the same environment (e.g., garden
bird salmonellosis; Horton et al. 2013).

Wild species associated with livestock
systems, in shared, contaminated environ-
ments, Feral Pigeons (Columba livia), and
European Starlings (Sturnus vulgaris), are
susceptible to salmonella infections from
livestock and vice versa (Gaffuri and Holmes
2012); however, the extent to which this may
occur is difficult to quantify. Passerine salmo-
nellosis (garden bird salmonellosis), particu-
larly in finches, sparrows, and buntings, causes
disease and mortality; in Europe this has been
widely associated with garden bird feeding
stations (Gaffuri and Holmes 2012). Although
human clinical disease has not been significant
in terms of severity or prevalence, these
infections are important because garden bird
salmonellosis has, in the study period, been
identified as a source of spillover disease in an
extensive range of animal species including
poultry, pets, domesticated species, wild
species, and humans (Horton et al. 2013;
Lawson et al. 2014). The prevalence of
salmonellosis in passerines in England has
declined since about 2009, for unknown
reasons and, during this time, the prevalence
of infection of these passerine-associated
salmonellae in domestic animals has also
declined.

West Nile virus infections, by Károly Erdélyi

West Nile virus is a zoonotic flavivirus
circulating in a wild bird–mosquito cycle in
endemic and sporadically infected areas of
Africa, Europe, the Americas, Australia, and
Asia (Petersen et al. 2013). Varying degrees of
disease and mortality are caused by WNV in
several bird species, particularly birds of prey
and corvids. European bird species are
generally less susceptible to clinical WNV
disease, with the possible exception of some
birds of prey (e.g., Goshawks, Accipter
gentilis; Bakonyi et al. 2013). Some reptiles
(e.g., alligators) and amphibians (e.g., marsh
frogs, Pelophylax ridibundus) infected with
WNV develop disease with high levels of
viremia. Mammals are generally considered
dead-end hosts, but potential for WNV
transmission has been identified in some
North American squirrel species (Padgett et
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al. 2007). Due to the increased exposure of
highly susceptible elderly people and patients
with predisposing chronic conditions, human
West Nile fever poses a public health
challenge in Europe and worldwide (Petersen
et al. 2013).

Historically, European WNV circulation
was characterized by short epidemics occur-
ring predominantly in the Mediterranean
area. This changed after the European
expansion of the lineage 2 WNV strain that
was introduced to Hungary in 2004 (Petersen
et al. 2013). Following its spread across
Central Europe in 2008–09 (Bakonyi et al.
2013), a highly virulent variant of this WNV
strain caused a major epidemic in Greece in
2010–13, appeared in humans and animals in
Northern Italy in 2011 and caused another
serious West Nile fever outbreak in Serbia in
2012–13 (Hernández-Triana et al. 2014). The
spatiotemporal pattern of these sequential
events suggests that migratory bird species
play a role in the dispersal of WNV from
endemically infected areas. The exceptional
potential for geographic spread of WNV by
migratory birds is demonstrated by the North
Italian emergence of the lineage 2 Volgograd
strain previously found only in the Black Sea
region (Ravagnan et al. 2015).

The presence of lineage 1 and 2 WNV
strains and Usutu virus in Northern Italy is a
good example of the cocirculation of multiple
flavivirus strains, an important feature of
WNV epidemiology (Nikolay 2015). The
virulence of the circulating lineage 2 WNV
strain has increased over the past 5 yr,
resulting in the West Nile fever epidemics
with high fatality in Greece and Serbia
(Hernández-Triana et al. 2014). The uninter-
rupted circulation of the virus in Central
Europe led to one of the longest WNV
epidemics in the continent.

Monitoring of WNV in arthropod vectors
has provided information on current geo-
graphic distribution, revealing both a north-
western (Southern Moravia [Czech Republic])
and a southwestern (northern Italy) expan-
sion. From the wide range of competent
mosquito vectors with a Europe-wide distri-
bution, contemporary evidence is available for

the primary vector role of Culex pipiens and
additional involvement of Culex modestus,
Oshlerotatus annulipes, and Coquillettidia
richardii in WNV circulation (Szentpali-Gav-
aller et al. 2014; Rudolf et al. 2017). These
developments indicate a potential for further
westerly spread of WNV in the coming
decade. As has been demonstrated by the
focal epidemics of Usutu virus in Switzerland,
Germany, Czech Republic, France, and Bel-
gium, adequate environmental conditions for
circulation of WNV and other mosquito-borne
flaviviruses may also exist in Western and even
Northern Europe (Cadar et al. 2017). The
potential northwestern expansion of WNV in
Europe may pose unforeseen risks to endemic
bird species.

The extent and severity of these potential
future epidemics would depend on the
virulence of the WNV strain and the still-
undefined vector capacity of local mosquito
populations. The dynamic epidemiology of
WNV in Europe, forming a pattern of
endemically infected core areas (Mediterra-
nean coast, Carpathian basin) and newly
emerging epidemic foci, necessitates continu-
ous development and evaluation of WNV
surveillance across Europe, which utilizes
the most efficient tools for risk assessment
and early warning.

WILDLIFE PATHOGENS WITH PRIMARY

IMPACTS ON LIVESTOCK HEALTH

African swine fever virus infections, by Iwona

Markowska-Daniel

African swine fever virus (ASFV, family
Asfarviridae) infects domestic pigs (pigs),
European wild boars, bushpigs (Potamochoe-
rus spp.), warthogs (Phacochoerus spp.), and
giant forest hogs (Hylochoerus spp.; Costard
et al. 2013). Until 1957, ASF was restricted to
Africa. In the 1960s, it spread to Portugal and
Spain and after .30 yr was eradicated on the
Iberian Peninsula. However, it has been
endemic on the island of Sardinia since 1978
(Sánchez-Vizcaı́no et al. 2013), and new cases
in pigs and wild boars continue there. In 2007,
after incursion into Georgia, ASFV spread
rapidly in the Caucasus, the Russian Feder-
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ation, Ukraine, and Belarus, reaching the
Eastern European (EE) countries in 2014
(Pejsak et al. 2014; Fig. 2). As of 1 January
2017, 23 cases of ASF in pigs and 161 in wild
boars were detected in northeastern Poland,
near the border with Belarus (Animal Disease
Notification System 2017). Cases reported in
Estonia were 24 pigs and 1,816 wild boars, in
Latvia 35 pigs and 1,766 boars, and in
Lithuania 38 pigs and 459 boars (Animal
Disease Notification System 2017). Ukraine
declared 147 outbreaks to the OIE in pigs and
wild boars (OIE 2013). Two new cases were
also reported in Moldavia in 2016 and ASF
continued to be detected in the Russian
Federation.

Wild boars are more severely affected than
are pigs. Free-ranging, infected wild boars can
move the disease through natural corridors,
playing an important role in ASF spread in
EE, as shown by sequence analysis of ASFV
isolates from the first cases in EE (Gallardo et
al. 2014). The first cases of ASF in the EU
were detected by passive surveillance of wild
boars found dead; the number of ASF cases in
dead wild boars was significantly higher than
in hunted, apparently healthy boars (Pejsak
and Markowska-Daniel 2015).

Experimental studies showed that currently
circulating ASFV is highly virulent, causing
death in most infected wild boars before they

develop detectable antibody response (OIE
2013). This was also demonstrated in field
surveys in Latvia and Poland, where only a
very low percentage of living infected wild
boars were antibody positive. Moreover, in
natural conditions, although the virus shows
high virulence and very high lethality, it
demonstrates relatively low infectivity, sug-
gesting the disease is not highly contagious.

A detailed spatiotemporal analysis of ASF
in wild boars in the affected region of Poland,
during February–December 2014, revealed
that the annual movement of the ASF disease
front was approximately 30 km, or almost 3
km/mo (Pejsak and Markowska-Daniel 2015).
It also demonstrated that the population
density of wild boars was sufficient to support
significant further spread of ASF. A wild boar
density of about 2/km2 favors sustainable
circulation of ASFV in boars. However, in
Poland, in 2014 the density of wild boars in
the affected region was around 1.5/km2.
From 2014–15 the density in this region
decreased by 25% and currently there are
0.3–0.5 boars/km2 (Pejsak and Markowska-
Daniel 2015). Nevertheless, ASF continues
to be detected in wild boars in the region,
suggesting that once ASF is established in an
area, high wild boar population density is not
required for continued viral circulation. This
may be due to the presence of infected boar
carcasses, which may serve as a source of
virus.

All ASFV isolates are from EE genotype
II, suggesting one virus introduction. The
sequence of the intergenic (noncoding)
region demonstrated insertion of an addi-
tional tandem repeat sequence in ASFV
isolates from Belarus from 2013 and in
ASFV from Lithuania and Poland from
2014, which is absent in Russian isolates
from 2012 and from Georgian isolates from
2007 (Gallardo et al. 2014). This suggests
possible genetic variability among ASFVs
circulating in EE. It was highly likely that
ASFV was introduced into EE by wild boars
entering Lithuania and Poland from Belarus
(Gallardo et al. 2014).

It is likely that ASFV will spread further
with wild boars into new regions and

FIGURE 2. Removal of the carcasses of dead wild
boars infected with African swine fever virus, Kolonia
Zaleszany, Poland, October 2014. Photograph courtesy
of Joanna Piekut.
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countries in Europe. Long-term disease
management and control, based for example
on noninvasive sampling (oral fluid, feces),
should focus on surveillance of wild boars
and pigs to enable early detection; strict
biosecurity measures can then be introduced
to prevent ASFV spread in pigs. Further
characterization of the isolates currently
circulating and research into their evolution
should be prioritized.

Avian influenza virus infections in wild birds, by

Thijs Kuiken

Avian influenza A viruses predominantly
infect waterbirds of the orders Anseriformes
(mainly ducks, geese, and swans) and Chara-
driiformes (mainly gulls, terns, and waders).
Such infections of wild waterbirds occur
widely in Europe and almost exclusively
involve low pathogenic avian influenza viruses.
Exceptions are HPAI viruses of the subtypes
H5N1 and H5N8. Following the incursion of
HPAI H5N1 virus into Europe, particularly in
the winter of 2005–06, the reported detection
of HPAI H5N1 virus in wild birds became less
frequent, with the last published report in a

Common Buzzard (Buteo buteo) from Bulga-
ria in 2010 (Reid et al. 2010), prior to the
outbreak of HPAI H5N8 in a range of wild
bird species in 2014. No further cases of
HPAI H5N1 have been detected in poultry or
wild birds in Europe since 2010 (OIE 2017).

However, in November 2014, HPAI H5N8
virus emerged in Europe (Verhagen et al.
2015; Fig. 3). This virus, which had inherited
several gene segments from HPAI H5N1
viruses of the A/Goose/Guangdong/1/1996
lineage, was first detected in China in 2010
(Lycett et al. 2016). In September 2014, the
virus was detected in a hunter-shot Eurasian
Wigeon (Anas penelope) in northeast Russia
(Lycett et al. 2016).

The virus spread to Europe soon after-
wards. Between November 2014 and Febru-
ary 2015, HPAI H5N8 virus was detected on
poultry farms and other holdings as well as in
a few wild waterbirds in Germany, the
Netherlands, the UK, Italy, and Hungary,
and in two Mute Swans (Cygnus olor) in
Sweden (Lycett et al. 2016). In the same
period, the virus spread to poultry farms and
wild birds in western and central North

FIGURE 3. The 2014 H5N2 and H5N8 (avian influenza) virus detection in poultry and wild birds. The almost
simultaneous detection of closely related viruses in Asia, Europe, and North America suggests linkage with wild
bird migration via a large region in Russia. Image reproduced with permission from Verhagen et al. (2015).
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America (Lycett et al. 2016). A global analysis
of H5N8 viral sequences, epidemiologic
investigations, waterfowl migration, and poul-
try trade indicated that the main routes of
large-scale geographic spread of HPAI H5N8
virus were likely not via trade in poultry or
poultry products, human travel, or transport
of materials associated with the poultry
industry. Instead, HPAI H5N8 virus likely
spread via long-distance flights of infected
wild birds, first in spring 2014 from South
Korea to their northern breeding grounds and
then in autumn 2014 from these breeding
grounds along migration routes and to win-
tering sites in North America and Europe
(Lycett et al. 2016). In November 2016, HPAI
H5N8 virus again emerged in Europe (Pohl-
mann et al. 2017) and, by March 2017, had
been reported in 24 European countries (OIE
2017).

The potential for virus exchange between
poultry and wild birds is likely to increase as a
result of rapidly growing global poultry
production (Bruinsma 2003) and increasing
endemicity of avian influenza virus in poultry
(Alexander 2007). Also, production of organic
poultry in the EU has increased nearly
fourfold from 6.5 million in 2003 to 33.6
million in 2014 (European Commission 2016;
table 7). This indicates an increase in the
number of free-range (outdoor) poultry farms,
which are at higher risk from incursion of low
pathogenic avian influenza viruses than are
closed farms (Van Der Goot et al. 2013).
Therefore, more avian influenza viruses are
likely to spill over from poultry to wild birds
and vice versa in the next decade unless
biosecurity is improved.

Bluetongue virus infections, by Francisco Ruiz-

Fons

Bluetongue is a disease of ruminants caused
by bluetongue virus (BTV), a vector-borne
Orbivirus. The main wildlife hosts in Europe
include several wild ruminant species, which
do not show clinical signs upon infection,
except for one report in a game reserve of
Spanish mouflons (Ovis orientalis orientalis),
a close relative of domestic sheep (Ovis aries)
(Fernandez-Pacheco et al. 2008). However,

on the basis of demographic status, geograph-
ic distribution, behavioral patterns, and inci-
dence of BTV, the red deer appears to be the
most susceptible wild ruminant and may
therefore represent a wildlife reservoir in
Europe (Ruiz-Fons et al. 2008), particularly
southern Europe (Rossi et al. 2014).

The decade prior to 2015 saw frequent
incursions of BTV into Europe, and almost
every wild ruminant species investigated on
the continent was found to be susceptible to
infection. The Pyrenean chamois (Rupicapra
pyrenaica, subsp. pyrenaica, parva, and orna-
ta) and the Alpine chamois (R. rupicapra)
were recently added to this list (Ruiz-Fons et
al. 2014).

The geographic expansion of BTV in wild
ruminants is similar to that reported in
domestic ruminants (Ruiz-Fons et al. 2008;
Rossi et al. 2014), which are the main
reservoirs for BTV in Europe. Efforts to
control its spread in livestock significantly
reduced the geographic range of BTV in
livestock and perhaps in wildlife (Rossi et al.
2014). This reduction in range was evident for
most of central and northern Europe (UK, the
Netherlands, Belgium, Sweden, Germany)
but not for southern Europe (Portugal, Spain,
France, Italy, Croatia, Greece, Bulgaria).
Currently, BTV is endemic in southern
European livestock and red deer populations.
Southern Europe also experiences annual
incursions of BTV-infected midges from
northern Africa and the Middle East, further
complicating BTV control in the region.

Future studies of BTV in European wildlife
should definitively indicate whether BTV
transmission at the livestock-wildlife interface
occurs and the extent to which wildlife in
southern Europe maintain BTV, as well as
determining its vectors. This scenario of
wildlife maintenance of BTV in southern
Europe may be associated with risks of
temporal incursions of BTV into central and
northern Europe through host or vector
movements. If climate change results in more
favorable conditions for BTV persistence in
vector species in central and northern Eu-
rope, the range of endemic BTV may expand
northward.
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Bovine tuberculosis, by Jean Hars and Dolores

Gavier-Widén

Bovine tuberculosis, caused by Mycobacte-
rium bovis or Mycobacterium caprae, is a
zoonotic disease with a wide host range. The
main wildlife hosts in Europe are European
badgers (Meles meles), wild boars, and red
deer; their epidemiologic role as maintenance
or spillover host varies regionally (Gavier-
Widen et al. 2009).

In wildlife, bTB occurs in focal areas in the
British Isles (but more extensively in south-
western England, Wales, and Ireland), the
Iberian Peninsula, the Alps, France, and
Eastern Europe. A surveillance program for
bTB in free-ranging wildlife (‘‘the Sylvatub
system’’; https://www.plateforme-esa.fr/
sylvatub-actualites) launched in France in
2011 determined that, by 2015, bTB was
present in wildlife in 11 French departments
but was observed only in bovine-infected
areas, and the genotypes of M. bovis isolated
from cattle were identical to those isolated
from wildlife in the same areas. Badgers and
wild boars had the highest infection rates and
M. bovis was also isolated from four roe deer
in the Dordogne. In several areas in France,
bTB has evolved in a multihost system
involving cattle, badgers, wild boars, and red
deer (Hauer et al. 2015).

Mycobacterium caprae has been primarily
associated with disseminated bTB in goats.
However, in central Europe it has recently
emerged in cattle, wild boars, and red deer. In
countries considered essentially free of bTB
(the vast majority of livestock in Europe is
bTB free), such as Austria, Germany, and the
Czech Republic, a large proportion of bTB
cases in free-ranging red deer and domestic
cattle are caused by M. caprae (Rodrı́guez et
al. 2011). Several human cases due to M.
caprae have been reported in these countries
of central Europe (Prodinger et al. 2014) and
in Spain (Rodriguez et al. 2009) and France
(Aime et al. 2012). In a study of bTB in
wildlife in the Alps, Fink et al. (2015)
investigated 1,655 hunted red deer and found
high M. caprae prevalence, primarily in
Austria, thought to be facilitated by aggrega-

tions of the population due to supplementary
feeding.

In the Bieszczady Mountains, southeastern
Poland, bTB affected a herd of free-living
European bison (Bison bonasus caucasicus;
Krajewska et al. 2014). The herd was depop-
ulated in 2012; however, in the same year, a
wild boar from the same area was found
infected with the same spoligotype identified
in the bison (Krajewska et al. 2014).

Mycobacterium bovis in livestock has been
eradicated or controlled in large parts of
Europe, but remains a challenge in areas
where there are wildlife reservoirs. Once bTB
is established endemically in wildlife popula-
tions, eradication is very difficult. Further-
more, increase of bTB in cattle in many parts
of Europe has been attributed to wildlife (wild
boars, red deer, and badgers) as a possible
source of infection.

Brucellosis, by Jacques Godfroid

Brucellosis is a zoonotic disease with a
significant global impact on animal and
human health. Brucella melitensis, Brucella
abortus, and Brucella suis, causative agents
of small ruminant, bovine, and swine brucel-
losis, respectively, are important animal and
human pathogens. Two novel transmission
scenarios at the wildlife/livestock/human
interface have recently been described: 1)
In France, B. melitensis spilled over from a
previously unrecognized wildlife reservoir—
the Alpine ibex (Capra ibex)—to cattle, and
from cattle to humans, via human consump-
tion of unpasteurized cheese (Mick et al.
2014); 2) In Poland (Szulowski et al. 2013)
and Belgium (Fretin et al. 2013), B. suis
biovar 2 spilled over from wild boars, a
recognized wildlife reservoir, to cattle. How-
ever, while B. melitensis is pathogenic for
cattle (abortions have been described), B.
suis biovar 2 is not. All biovars of B.
melitensis are zoonotic. Brucella suis biovar
2 is not a true pathogen for humans, in
contrast to B. suis biovars 1, 3, and 4, which
are all zoonotic (Godfroid et al. 2011). In the
EU, 354 confirmed brucellosis cases were
reported in 2014, and the highest rates were

REVIEW 21

Downloaded From: https://bioone.org/journals/Journal-of-Wildlife-Diseases on 28 Mar 2024
Terms of Use: https://bioone.org/terms-of-use



reported by southern Member States that are
not yet officially free of bovine brucellosis or
B. melitensis (European Centre for Disease
Prevention and Control 2017).

Brucella microti was isolated from wild
boars without clinical disease (Rónai et al.
2015). The bacterium was also isolated from
common voles (Microtus arvalis; Scholz et
al. 2008) and from red foxes (Scholz et al.
2009). Recently, it has been shown that
novel Brucella species are distributed among
exotic frogs worldwide and found in frogs
housed in a tropical animal collection in
Europe (Scholz et al. 2016). This followed
reports of the isolation of Brucella from an
African bullfrog (Pyxicephalus adspersus) at
a quarantine center in Germany and from a
big-eyed tree frog (Leptopelis vermiculatus)
from a pet shop in Germany (Eisenberg et
al. 2012). Although it is likely that these
Brucella spp. infected their hosts before
they were imported, these cases emphasize
the importance of careful screening of
imported wildlife to avoid importation of
pathogens of risk to animal and human
populations.

In 2016, a 12th Brucella species, Brucella
vulpis sp. nov., was isolated from mandibular
lymph nodes of red foxes in Austria (Scholz
et al. 2016). This is the second new Brucella
species recently isolated from red foxes.
More spillover events from wildlife to live-
stock, and possibly from wildlife to humans,
are likely, particularly from unrecognized
wildlife reservoirs of Brucella spp. Likewise,
new Brucella spp. may be described. We
believe the most significant research findings
are the isolation of Brucella spp. from the
environment and from poikilothermic species
(frogs), which represents a paradigm shift in
our understanding of Brucella infection
biology. Given that the host range of Brucella
spp. has increased to include poikilotherms,
the presence of Brucella in the marine food
web, including fish, must now be investigat-
ed. In this context, fish were potential
sources of Brucella pinnepidialis infection
for seals (Lambourn et al. 2013; Nymo et al.
2013).

Chronic wasting disease, by Dolores Gavier-Widén

Chronic wasting disease is a transmissible
spongiform encephalopathy, a chronic neuro-
degenerative infectious prion disease of free-
ranging and captive cervids. Initially, CWD
was thought to be restricted to North America
until it was introduced to South Korea via
infected elk from Canada (Sohn et al. 2002).
In North America, CWD naturally affected
mule deer (Odocoileus hemionus hemionus),
white-tailed deer (Odocoileus virginianus),
Rocky Mountain elk (Cervus elaphus nelsoni),
and Shira’s moose (Alces shirasi; Gavier-
Widen 2012).

In 2006–10, Andreoletti et al. (2010)
screened 3,274 farmed cervids and 10,049 wild
cervids in the EU for CWD and other
transmissible spongiform encephalopathies; all
were negative. Then, in March 2016, a 3–4-yr-
old female wild reindeer (Rangifer tarandus
tarandus) in the Nordfjella mountain area in
Norway was diagnosed with CWD (Benestad
et al. 2016). This was the first detection of
CWD in Europe, and its first detection in a
reindeer. In May 2016, a 13-yr-old female
European moose in Norway (in Selbu, South
Trøndelag County), about 300 km northeast
from the reindeer case and showing abnormal
behavior and poor body condition, was eutha-
nized and diagnosed with CWD (Vitenskap-
skomiteen for mattrygghet [Norwegian
Scientific Committee for Food Safety; VKM]
2016). Necropsy of another old female moose
found dead in the same area revealed traumat-
ic injuries in the thorax and the moose was
positive for CWD (VKM 2016).

Norway immediately implemented an inten-
sive surveillance program. About 29,000 animals
of four species (reindeer, red deer, roe deer, and
moose) were tested by November 2017, and
CWD was detected in eight wild reindeer, three
moose, and one red deer (Norwegian Veterinary
Institute 2018). The clinical, pathologic, and
molecular features in the reindeer were similar
to CWD in North America but differed from
the moose and red deer in Norway in in that
some characteristics were consistent with atyp-
ical prion disease, and the cases are preliminar-
ily referred to as ‘‘atypical CWD.’’ Ongoing
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investigations will characterize the strain(s) of
prions involved in Norway. Eradication and
control measures in Norway include depopula-
tion of the entire reindeer herd affected, about
2,000 wild reindeer, and increased surveillance
(VKM 2017).

The source of CWD in Norway has not
been identified (VKM 2016). The geographic
extent of infection in Europe and the preva-
lence and full range of cervid species affected
are not known because limited surveillance
has been conducted. The finding of CWD in
Europe creates significant concern for several
reasons. There is the potential for a substan-
tial impact on health in populations of free-
ranging cervids. Moreover, once CWD is well
established in a cervid population and envi-
ronmental contamination occurs, eradication
is considered unfeasible. If CWD becomes
widespread, the economic impact on the
hunting industry can be high and, if CWD
enters the farmed cervid population, there
could be considerable negative effects on the
cervid farming industry.

The finding of CWD in reindeer suggests
that reindeer are naturally susceptible to
CWD. There is some contact between wild
reindeer and semidomesticated reindeer and
between reindeer and other cervids focally in
several locations in Europe. Reindeer herding
is a tradition and a main source of subsistence
for the Sami people in Fennoscandia. There-
fore, CWD would have a significant socioeco-
nomic impact if it enters the semidomesticated
reindeer populations. Reindeer management is
normally seminomadic, in which the reindeer
are moved between winter and summer
pastures and even across national borders.

Even though CWD has not been known to
affect humans, uncertainties about the bio-
logic behavior of prions remain. The risk for
humans to contract CWD is classified as very
low (very rare, but cannot be excluded);
nevertheless, measures to avoid or diminish
exposure to humans (e.g., by avoiding con-
sumption of meat from CWD-infected ani-
mals) are recommended (VKM 2016).

A better understanding of the occurrence
and spread of CWD in Europe is needed to
design control and management strategies.

Therefore, the first and most urgent step is
intensive surveillance with specific testing for
CWD.

Schmallenberg virus infections, by Erik O. Ågren

Schmallenberg virus (SBV), an orthobunya-
virus, is an emerging pathogen in Europe
spread by biting midge (Culicoides spp.)
vectors. Ruminants (cattle, sheep, and goats)
and alpacas (Vicugna pacos) are susceptible to
infection (Wernike et al. 2015). Mild clinical
disease occurs in adult domestic ruminants,
but if a dam is infected for the first time while
pregnant, transplacental infection may result
in abortion or birth of malformed or weak
offspring. Typical congenital malformations
affect the limbs and skeleton (arthogryposis,
kyphosis, scoliosis, lordosis, and brachygna-
thia) and the central nervous system (hydran-
encephaly , porencephaly , cerebel lar
hypoplasia, hypoplasia of the brainstem, and
spinal cord; Wernike et al. 2015).

Schmallenberg virus emerged in central
Europe in 2011 and spread rapidly through-
out Europe via wind-dispersed, infected
midges (Linden et al. 2012). Wildlife infection
can potentially occur in areas where livestock
are infected. Surveillance of SBV in wildlife
has been sporadic, but investigators have
detected antibodies against SBV in most
European wild ruminants, both free-ranging
and farmed, especially cervids (Capreolus,
Alces, Cervus elaphus, and Dama dama) but
also in mouflon (Ovis orientalis), chamois
(Rupricapra spp.), Alpine ibex, and wild boar
(Larska et al. 2013; Laloy et al. 2014; Rossi et
al. 2015). There are no reports of fetal
malformations or reproductive losses resulting
from SBV infection in wildlife; however, there
are findings of wildlife stillbirths and abortions
in the field but they are relatively rare. In
northern European cervids, rut and pregnan-
cy occur late in the year, when midge activity
has generally ceased because temperatures
are low, whereas in central and southern
Europe some deer species will be pregnant
when midges are active. Evidence to date
suggests that cervids and other wild ruminants
are susceptible to SBV infection, but clinical
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disease has not been described in these
species (Rossi et al. 2015).

WILDLIFE PATHOGENS WITH PRIMARY

IMPACTS ON WILDLIFE CONSERVATION AND

BIODIVERSITY

Amphibian ranavirus infections, by Stephen J.

Price

Amphibian-like ranaviruses (family Irido-
viridae) cause a systemic, hemorrhagic disease
of amphibians that can also affect reptiles and
fish, and they are associated with mass-
mortality events on five continents (Gray et
al. 2009). Mass die-offs of European common
frogs (Rana temporaria) in the UK, due to a
ranavirus (Fig. 4), have been detected for
approximately 25 yr (Cunningham et al. 1996),
and there are older records of similar

infections in frogs in the former Yugoslavia
(now Croatia; Fijan et al. 1991) as well as in
European fish. More recently, Europe has
been the focus of a newly emerging ranavirus
lineage.

Since 2010, common midwife toad virus
and related viruses (CMTV-like) are ranavi-
ruses that have been reported at several
locations in Europe in an increasing number
of host species and with severe impacts.
Multihost amphibian die-offs in Picos de
Europa National Park, Spain, have been
caused by CMTV since 2005 and have since
caused the collapse of amphibian communi-
ties there (Price et al. 2014). At another site in
Spain, the related Bosca’s newt virus has also
caused severe mortality events since 2010,
affecting two species of newt and spilling over
into viperine watersnakes (Natrix maura;

FIGURE 4. A live, adult common frog (Rana temporaria) experiencing emaciation and severe ulceration
during a ranavirus disease outbreak in a British garden pond, June 2010. Photograph courtesy of Stephen J. Price.
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Price et al. 2014). Following the events
observed in Spain, amphibian die-offs were
detected in Denmark, Belgium, the Nether-
lands, Germany, France, and Portugal (Duf-
fus et al. 2015) involving viruses provisionally
classed as CMTV-like based on limited
sequence data. Another lineage of ranavirus
(FV3-like) has caused serious declines of
common UK frogs (Teacher et al. 2010), and
experimental data suggest that UK viruses are
primarily hosted by the common frog, with
lower prevalence and disease severity in the
common toad (Bufo; Duffus et al. 2014). This
contrasts with observations of the extremely
generalist CMTV-like viruses in Spain.

The severe effects and observed host range
of ranaviruses in Spain has increased aware-
ness of the threat to biodiversity posed by
ranaviruses. As multihost pathogens that
sometimes exhibit frequency-dependent
transmission, they can drive population extir-
pations. In addition, sporadic records of
infections in reptiles hint at a greater threat
for reptiles than previously recognized. There
is also increasing support for a role for
humans in ranavirus emergence through the
amphibian trade. In some regions, ranaviruses
may have been associated with amphibians for
millions of years while, in others, virus
diversity suggests a modern layer of virus
movement; in addition, ranaviruses have been
found at high prevalence among traded
animals. However, there remains a general
lack of knowledge about potential modes of
spread and impacts of ranavirus infections,
and the research community must strive to
generate data to inform surveillance and
control efforts.

Chytridiomycosis, by An Martel and Frank

Pasmans

Although a variety of factors are involved in
amphibian declines worldwide, fungal chytri-
diomycosis is one of the major infectious
diseases involved and has resulted in the
extirpation of .40% of amphibian species in
areas of Central America and widespread
losses across Europe, Australia, and North
America. The first known etiologic agent of
amphibian chytridiomycosis, Batrachochy-

trium dendrobatidis (Bd), causes disease in a
variety of amphibian species of the three
orders—frogs and toads (Anura), salamanders
and newts (Urodela), and caecilians (Gymno-
phiona), and has triggered significant declines
in over 200 amphibian species including
several suspected extinctions in recent de-
cades (Skerratt et al. 2007). European am-
phibians have heterogeneous responses to Bd
exposure. Some species are susceptible to
both infection and mortality attributable to
chytridiomycosis, others seem less likely to
suffer from either, and still others are
refractory to infection (Pasmans et al. 2013).
At present, Bd is widespread across Europe,
where the general pattern appears to be a
coexistence steady state within amphibian
communities (Balá et al. 2014; Spitzen-van
der Sluijs et al. 2014). In Europe, Bd-driven
amphibian declines may be limited to foci in
the Pyrenees and Spain. Because Bd infection
dynamics appear to be largely driven by
environmental determinants (Schmeller et al.
2014; Spitzen-van der Sluijs et al. 2014), the
current state of endemism may shift toward a
less favorable, epidemic scenario.

Recently, a novel chytrid fungus, Batracho-
chytrium salamandrivorans (Bsal) has
brought European salamander populations to
the edge of extirpation (Martel et al. 2013).
The fungus was likely introduced from Asia by
infected amphibians (Martel et al. 2014) and
the pet trade is the most plausible mechanism
(Nguyen et al. 2017). Experiments demon-
strated that frogs and toads are not susceptible
to disease but can be infectious carriers
(Stegen et al. 2017). Salamanders can be
resistant (no infection, no disease), tolerant
(infection in the absence of disease), suscep-
tible (infection resulting in clinical disease
with possibility of subsequent recovery), or
highly susceptible (infection resulting in lethal
disease). The highly susceptible fire salaman-
der (Salamandra salamandra), currently the
most affected species, cannot mount immuni-
ty after previous exposure (Stegen et al. 2017;
Fig. 5) whereas in Asia, Bsal appears to be
endemic, in Europe the fungus is exclusively
associated with disease epidemics, and indi-
viduals of most European salamander taxa
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have died shortly after experimental exposure
(Martel et al. 2014). Currently outbreaks
occur in areas in the Netherlands, Belgium,
and Germany (Spitzen-van der Sluijs et al.
2014). Because there are no natural barriers in
mainland Europe that can prevent its spread,
Bsal is a serious threat to European salaman-
der diversity.

Counteracting the impact of chytridiomy-
cosis on amphibian populations is a major
challenge. For Bd, immunization (McMahon
et al. 2014), disinfection (Bosch et al. 2015),
and use of biocontrol (e.g., probiotics or
predatory microorganisms; Schmeller et al.
2014) offer some perspectives for in situ
mitigation. For Bsal, mitigation is further
complicated by the production of encysted
spores that remain infective for a long time
and are resistant to predation (Stegen et al.
2017).

Canine distemper virus infections, by Marie-Pierre

Ryser-Degiorgis

Canine distemper (CD), caused by canine
distemper virus (CDV), is typically a disease

of carnivores. However, species of artiodac-
tyls, rodents, proboscidea, and primates were
also found to be susceptible (Martinez-Gu-
tierrez and Ruiz-Saenz 2016). The detection
of CDV in fleas from an infected mink raised
questions regarding the potential role of blood
feeding insects in the horizontal transmission
of CDV (Trebbien et al. 2014).

Various CDV strains have occurred widely
in European wildlife for several decades. Yet,
over the past 10 yr, CD has emerged in
multiple hosts in various parts of the conti-
nent, causing high mortality in common
species such as the red fox and raising
concerns for the conservation of endangered
species including the Iberian lynx (Lynx
pardinus; Meli et al. 2010) and the grey wolf
(Canis lupus; Di Sabatino et al. 2014).

Since 2006, a major epidemic has extended
through Austria, northern Italy, Liechtenstein,
Switzerland, Germany, and Denmark, killing
numerous foxes, stone martens (Martes foina),
and badgers as well as an increasing number
of free-ranging and captive wild and domestic
species (Origgi et al. 2012; Trebbien et al.

FIGURE 5. A fire salamander (Salamandra salamandra) in Merelbeke, Belgium, April 2017, shows severe
lesions of Batrachchytrium salamandrivorans infection, visible as numerous small skin ulcerations with a black
margin (arrows). Photograph courtesy of Frank Pasman.
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2014). These have included domestic dogs
(Martella et al. 2010; Origgi et al. 2012), free-
ranging Eurasian lynx (Lynx lynx; Origgi et al.
2012), captive Asian marmots (Marmota
caudata), and a domestic cat (Felis catus)
coinfected with an orthopoxvirus (Origgi et al.
2013a; Wiener et al. 2013). From 2012–13,
CD affected raccoons in Berlin (Renterı́a-
Solı́s et al. 2014); furthermore, a large
outbreak occurred in mink (Neovison vison)
farms, free-ranging red foxes, ferrets, and
raccoon dogs in Denmark (Trebbien et al.
2014). In addition to evidence from the
geographic pattern of spread of CD, molec-
ular studies have shown that strains isolated
from different hosts and geographic areas
during this epidemic wave all belonged to the
European lineage and were identical or very
closely related (Origgi et al. 2012, 2013b;
Renterı́a-Solı́s et al. 2014; Trebbien et al.
2014). This finding contrasts with repeated

documentation of the coexistence of multiple
strains in the same geographic areas and time
periods (Demeter et al. 2007; Benetka et al.
2011; Nikolin et al. 2012; Billinis et al. 2013).

In parallel, there was a major, independent
CD outbreak in free-ranging Apennine wolves
(Canis lupus) in Italy. The identified virus
belonged to the Arctic lineage, with a high
genetic relatedness to strains from Italian
dogs, suggesting that dogs were the likely
source of infection (Di Sabatino et al. 2014).
Red foxes and badgers were affected by CDV
in the same area, but the lineage was not
confirmed. There was also CD emergence in
wildlife in Germany independent of the
epidemic wave in central Europe (Nikolin et
al. 2012). Similarly, an apparently isolated
outbreak, affecting mainly stone martens in
Belgium, was suspected to be due to CDV
spreading from endemic areas in central
Europe toward naı̈ve, west-European popula-

FIGURE 6. Outbreaks of Canine distemper in wildlife reported in the scientific literature. As not all areas or
outbreaks were specified, the map may be inaccurate. Unless otherwise specified, affected animals were free-
ranging. Black areas depict independent local outbreaks; those with grey legend boxes were of suspected
domestic dog (Canis lupus familiaris) origin. Dark grey areas refer to a transnational epidemic that likely started
in Hungary (HU), where a diseased domestic dog was documented in 2004, and expanded over Austria (AT),
southeastern Germany (DE), and northern Italy (IT) in 2006–08, Liechtenstein and Switzerland in 2009,
northeastern Germany, and finally Denmark (DK) in 2012 (see white arrows), with cases continuing to occur.
Although red foxes (Vulpes vulpes) and badgers (Meles meles) are the most affected species, increasing numbers
of other hosts were recorded as the epidemic front progressed west and north. Figure by Marie-Pierre Ryser-
Degiorgis.
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tions prior to the major epidemic wave
(Tavernier et al. 2012). Finally, in 2011 a
severe outbreak was reported in ferrets in the
UK (Thomas 2012). Figure 6 shows the
countries and species in which CDV was
detected during this period.

Presently, CDV is of growing concern due
to its propensity for host-switching and
emergence in new species, including endan-
gered wildlife; this poses challenges for
disease control. The dynamics of CDV in
natural ecosystems are highly complex, and
spillover from dogs into multihost systems can
result in development of a maintenance
community (Viana et al. 2015). Reduced
vaccination of domestic dogs, increased pet
movement, and human encroachment into
wildlife habitats pose serious risks for spread
and re-emergence of CDV in free-ranging
wildlife. Conversely, infected wild populations
may increasingly be a source of infection for
domestic animals and captive wild animals.
Furthermore, outbreaks in nonhuman prima-
tes, and the clear ability of the virus to cross
species barriers, have raised concern that
CDV could become a threat to humans. Some
viral proteins of CDV and of the closely
related measles virus are interchangeable, and
certain CDV strains have the potential to
replicate in human epithelial cell lines.
Therefore, CDV may have sufficient latent
potential to adapt and cause disease in
humans (Otsuki et al. 2013).

Lagovirus infections in wild rabbits and hare, by

Antonio Lavazza

Rabbit hemorrhagic disease and EBHS are
similar diseases caused by two related but
phylogenetically distinct RNA viruses of the
genus Lagovirus, family Caliciviridae. Both
RHD and EBHS have a restricted host
specificity, both naturally and experimentally
(Lavazza et al. 1996); they were initially
considered genus-specific, with RHD infect-
ing wild and domestic European rabbits and
EBHS mainly brown hares.

Rabbit hemorrhagic disease virus infections:
There is worldwide occurrence for RHD,
particularly where wild rabbits are common in
Europe and Oceania. However, Lagovirus

infections affect not only wildlife conservation
and biodiversity but may also affect the health
of farmed rabbits, causing economic losses.
This is particularly evident in those European
countries (Italy, France, Spain, Portugal,
Belgium, Greece, Malta, Hungary) where
rabbit farming is an active livestock produc-
tion industry.

Only one serotype of rabbit hemorrhagic
disease virus (RHDV) is known, including the
main antigenic variant named RHDVa. How-
ever, pathogenic RHDV strains can be
classified into three major phylogenetically
distinct groups (Kerr et al. 2009) and at least
six genogroups with a particular temporal
distribution (Le Gall-Reculé et al. 2003).
Moreover, the presence and circulation in
Europe of different nonpathogenic RHDV-
like viruses, similar to rabbit calicivirus (RCV)
characterized in farmed rabbits 1996 in Italy
and RCV-A1 in young wild Australian rabbits,
were recently confirmed (Le Gall-Reculé et
al. 2003; L. Capucci and P. Cavadini pers.
obs.). These results indicate the existence of a
gradient of cross-protection between circulat-
ing strains in Europe, from nonprotective to
partially protective to fully protective strains,
and highlight the extent of diversity within the
genus Lagovirus.

In 2010, a new RHDV-related pathogenic
virus (RHDV2) was detected in France,
initially in wild rabbits and then in farmed
rabbits vaccinated with RHDV vaccine (Le
Gall-Reculé et al. 2013). The origin of
RHDV2 is still under investigation, but
preliminary results indicate it did not evolve
from RHDV but is a new viral emergence
from an unknown source (Le Gall-Reculé et
al. 2013). The genomic and antigenic profiles
of RHDV2 are different from RHDV to such
an extent that it could be considered a distinct
serotype. Therefore, the name RHDV2 seems
more appropriate than the RHDVb used by
some authors.

In the years following the initial outbreak in
2010, RHDV2 spread rapidly within Europe,
causing significant losses in farmed and wild
rabbits in France, Italy, Portugal, Spain,
Germany, the UK, Malta, Norway, Sweden,
Denmark, Switzerland, the Netherlands,
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Hungary, and Belgium. Outside Europe,
RHDV2 is reported in Australia and Canada.
The disease caused by RHDV2 does not show
significant clinical, pathologic (Fig. 7), and
epidemiologic differences from ‘‘classical’’
RHD but it has the capacity to infect young
rabbits 10–15 d old. The mortality rates vary
depending on viral strain, from 5–20% in
strains identified in 2010–13 up to 80% in
more recent isolates (2014–15; Capucci et al.
2017). Additionally, RHDV2 infects and
causes European brown hare syndrome virus
(EBHSV)-like disease in three hare species:
Cape hare (Lepus capensis subsp. mediterra-
neus) in Sardinia (Puggioni et al. 2013), Italian
hare (Lepus corsicanus) in one case in Sicily
(Camarda et al. 2014), and European brown
hare in Spain and Italy (Velarde et al. 2016),
France (Le Gall-Reculé et al. 2016), and
Australia (Hall et al. 2016). These last findings

suggest a species jump of lagoviruses between
lagomorph genera, suggesting possible risk for
different hare populations. Given these data,
and the low immunity among wild rabbit
populations (due to the poor cross-protection
induced by ‘‘classical’’ RHDV), RHDV2 could
pose a significant threat to wild rabbit
populations and may result in a substantial
future population decline.

European brown hare syndrome: Since the
first description of EBHS in Sweden in the
early 1980s (Gustafsson et al. 1989), its
distribution has been restricted to Europe,
affecting primarily the European brown hare
as the main host species. European brown
hare syndrome has been also reported with
lower frequency in mountain hare and Italian
hare but not in other European Lepus species
such as L. granatensis and L. castroviejoi,
both present mainly in the Iberian Peninsula

FIGURE 7. Liver degeneration and congestion with evident lobular pattern in a doe (Oryctolagus cuniculus,
breed ‘‘Bianca Italiana’’) affected by acute rabbit hemorrhagic disease virus (photograph courtesy of Istituto
Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna’s archive). Photograph taken at necropsy
during an RHDV2 outbreak in Puglia, Foggia province in March 2013.

REVIEW 29

Downloaded From: https://bioone.org/journals/Journal-of-Wildlife-Diseases on 28 Mar 2024
Terms of Use: https://bioone.org/terms-of-use



and the Cape hare in Sardinia (Puggioni et al.
2013). In addition, field and experimental data
recently demonstrated that the eastern cot-
tontail (Sylvilagus floridanus) is susceptible to
infection with EBHSV (but not RHDV),
occasionally causing EBHS-like disease (Lav-
azza et al. 2015). The eastern cottontail could
therefore be considered a spillover or dead-
end host for EBHSV unless new evidence
shows an active role in the epidemiology of
EBHSV (Lavazza et al. 2015).

One viral serotype of EBHSV is recognized
but, in a study of 169 strains in France in 1989–
2003, several genogroups were identified (Le
Gall-Reculé et al. 2006). However, in contrast
to RHDV, the distribution of EBHSVs suggests
that the early viruses have not disappeared but
have slowly evolved in their area of origin. A
retrospective genetic and antigenic analysis of
samples collected in Sweden from 1982–2008
revealed two lineages: Group A, which existed
until 1989 when it apparently underwent
extinction; and Group B, which emerged in
the mid-1980s and from which the most recent
strains have come (Lopes et al. 2014). Howev-
er, EBHSV causes lower mortality than does
RHD, and dramatic changes in structure and
pathogenicity, as have been seen with RHDV2,
have not been observed for EBHSV. Indeed,
passive surveillance monitoring programs indi-
cate a progressive decrease in the number of
cases in wild hares in most European countries
in recent years.

Chiari et al. (2014) found that population
density influences virus maintenance in the
hare population: antibody prevalence was 3.3
times higher in high-density areas (.15 hare/
km2). Because eradication of EBHS in wild
populations is not feasible, the only way of
minimizing the impact of EBHS and main-
taining its incidence at low levels is a strategy
that implies the maintenance of a high hare
population density. In this situation, hares
more easily and frequently become infected
when they are young (,2–3 mo old; i.e., when
they are able to develop an active and
protective immunity without showing clinical
signs or succumbing to disease). A progressive
temporal decline in antibody prevalence and
the detection of EBHSV was seen over 7 yr

(2006–13); therefore, there may be a higher
risk of emergence of new EBHS epidemics in
these now-naı̈ve populations.

Morbillivirus infections in aquatic mammals, by

Thijs Kuiken

Morbillivirus disease occurs sporadically in
several species of seals and cetaceans in
European waters. Major epidemics occurred
in the North Sea in 1988 and 2002, in the
Mediterranean Sea in 1990–92 and 2006–08,
and in the Caspian Sea in 2000 (Rijks et al.
2012). In 2011, van Elk et al. (2014) detected
dolphin morbillivirus (DMV) in two white-
beaked dolphins (Lagenorhynchus albirostris)
that stranded on the Dutch coast of the North
Sea. As the stranding rate did not increase in
the region, they concluded that DMV likely
was not highly virulent for white-beaked
dolphins.

In 2011, DMV caused an epidemic with
high mortality in striped dolphins (Stenella
coeruleoalba) on the Spanish (Rubio-Guerri et
al. 2013) and Italian Mediterranean coasts (Di
Guardo et al. 2013). Smaller numbers of
bottlenose dolphins (Tursiops truncatus) and
fin whales (Balaenoptera physalus) also
stranded and were positive for DMV. In the
first 3 mo of 2013, there was an unusually high
stranding rate of (mainly) striped dolphins on
the Italian coast and again DMV was detected
in a high proportion (24 of 57) of carcasses
tested (Casalone et al. 2014).

A different morbillivirus is an important
pathogen in seals; after the last phocine
distemper virus (PDV) epidemic in harbor
seals (Phoca vitulina) in 2002 (Jensen et al.
2002), which killed about half of the North
Sea population, the virus disappeared and the
proportion of animals without anti-PDV
antibodies increased to an estimated 89% by
2012 (Bodewes et al. 2013a). This suggests
that reintroduction of PDV into the North Sea
harbor seal population would result in another
epidemic with similar infection and mortality
rates.

In general, morbilliviruses do not appear
to be maintained in aquatic mammal popu-
lations in European waters (Rijks et al.
2012). Dolphin morbillivirus can be highly
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pathogenic for striped dolphins and may
negatively affect other cetacean species. For
PDV, evidence suggests that these popula-
tions lose specific immunity with time,
rendering them at risk of ‘‘virgin soil’’
epidemics, which can cause high mortality
in a short time.

Seal influenza virus infections, by Aleksija

Neimanis

Wild waterbirds serve as the natural reser-
voirs for avian influenza A viruses (AIV) and,
although sporadic transmission to marine
mammals occurs, confirmed outbreaks of
AIV-associated disease have been restricted
to harbor seals in the US (Fereidouni et al.
2016). A mass mortality event involving
thousands of harbor seals began in March
2014 off the west coast of Sweden and spread
to Denmark, Germany, and the Netherlands
(Zohari et al. 2014; Bodewes et al. 2015a,
2016; Krog et al. 2015; Fig. 8). During that
event, AIV was isolated from several dead
harbor seals. The virus was characterized as
subtype H10N7, most closely related to AIVs
of Eurasian lineage circulating in wild and
domestic birds (Zohari et al. 2014; Bodewes et
al. 2015a; Krog et al. 2015). Infection targeted

the respiratory tract and concurrent bacterial
pneumonia was often seen. This was the first
isolation of the H10 subtype from seals and
the first documented AIV-associated epidemic
in harbor seals in Europe.

In addition to potential impacts on seal
populations (e.g., Bodewes et al. 2015a
reported mortality of up to 12% of the
Schleswig-Holstein population), H10N7 in-
fection of harbor seals may have public health
significance. Although the zoonotic potential
of H10N7 has not been assessed, productive
infection was demonstrated experimentally in
ferrets (Mustela putori furo; van den Brand et
al. 2016). Ferrets often are used in animal
models for influenza in humans because of
their similar susceptibility to infection and
disease from influenza viruses and the simi-
larities in histology, anatomy, and pattern of
virus attachment between ferret and human
respiratory tracts (van den Brand et al. 2014).
An AIV strain previously isolated during a
harbor seal epidemic (H7N7) caused conjunc-
tivitis in humans, and another strain (H3N8)
from harbor seals had adaptations that are
known, in other AIVs, to increase transmissi-
bility and virulence to mammals (Fereidouni
et al. 2016). Furthermore, certain H10 strains

FIGURE 8. Timing and progression of the H10N7 avian influenza outbreak in harbor seals (Phoca vitulina) in
northern Europe in 2014. The H10N7 avian influenza virus was first confirmed in a seal in Sweden in April 2014;
it then spread along the coasts of Denmark, Germany, and the Netherlands. Figure by Aleksija Neimanis.
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cause severe disease in some mammalian
species without prior adaptation in poultry
(Zohari et al. 2014). Finally, harbor seals in
California had antibodies to a human pan-
demic influenza A virus, suggesting harbor
seals could be coinfected with avian- and
human-origin influenza A viruses and might
serve as mixing hosts (Boyce et al. 2013). The
H10N7 virus was circulating in European
harbor seals for at least 10 mo, and molecular
analyses identified amino acid changes not
present in H10 viruses from Eurasian birds,
which suggests viral adaptation to the new
mammalian host (Bodewes et al. 2016).

Given the spread of H10N7 through harbor
seal colonies in the Kattegat, North, and
Wadden Seas, AIV could infect all harbor
seal colonies in Northern Europe. Antibodies
to H10N7 were detected in grey seals
(Halichoerus grypus) from Dutch waters
(Bodewes et al. 2015b), indicating that other
sympatric marine mammal species may play a
role in the epidemiology. Finally, infection of
European marine mammals with novel AIV
strains can be expected to occur again, and
surveillance for AIV in marine mammals,
coupled with further investigation of viral
adaptation, pathology, epidemiology, and zoo-
notic potential of H10N7, are warranted.

DISCUSSION

We selected 25 pathogens affecting Euro-
pean wild animals that have undergone
significant epidemiologic changes during
2010–16. These changes have already had an
impact on the health of wildlife, livestock, and
humans (either singly or, frequently, in
combination; Table 2), or the changes may—
due to their recently emerging nature—have
an impact on any or all of these populations in
the future. Due to changes in their epidemi-
ology, the diseases associated with these
pathogens can be considered EIDs in Europe,
and specifically EIDs in which wildlife has
had or may have a central role.

The epidemiologic changes in these diseas-
es usually consisted of an increase in number
of susceptible host species, an expansion of

geographic range, or involved the emergence
of new pathogens or new variants of existing
pathogens (Table 2). However, for some of
the listed pathogens (e.g., bat lyssaviruses,
hepatoviruses, filoviruses, and hantaviruses),
emergence was likely also related to increased
awareness of them and improved sensitivity of
methods for their detection.

The number of recognized pathogens that
can be transmitted between wildlife and
domestic animals is increasing, and the
pathogens may pose significant threats to
either or both populations. The predicted
increase in livestock production to meet the
growing demand for meat (Bruinsma 2003) is
likely to add to the risk of pathogen exchange
between livestock and wild animal popula-
tions. In many cases, wild ungulate popula-
tions in Europe have recovered, grown, and
expanded so that they have increasing contact
with livestock, further increasing the risk of
pathogen exchange between the two popula-
tions (Martin et al. 2011). The emergence and
spread of ASF in Europe highlights the
importance of international collaboration in
surveillance to identify emerging threats and
to improving our understanding of the role of
wildlife in the epidemiology of EIDs. African
swine fever was detected for the first time in
Eastern Europe in recent years and spread
back into domestic pigs after being introduced
into free-ranging wild boar populations. The
re-emergence and spread of HPAI (H5N1
and H5N8) in Europe is another example
demonstrating the links between wildlife and
domestic animal health and the importance of
ongoing disease surveillance in both popula-
tions. Transmission of H5N1 and H5N8
between wild birds and domestic poultry has
been clearly demonstrated, and there is
continued potential for the spread and move-
ment of these viruses from migratory wild
birds to poultry farms.

Climate change is often implicated as an
important factor in EIDs in Europe, and we
note the northerly spread in Europe of seven
(28%) of the pathogens discussed in this
review: CCHFV, Leishmania, WNV, BTV,
SBV, Francisella tularensis, and Echinococcus
multilocularis. The first five agents are arthro-
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pod vector-borne, and F. tularensis may also
on occasion be vector-borne. However, it is
difficult to provide scientific evidence for
causal links because there are many complex
and interrelated factors involved, long-term
data on most diseases are lacking, and climatic
conditions cannot be experimentally repro-
duced. Nonetheless, vector-borne diseases,
which are widespread across all latitudes in
Europe, offer examples of changes in their
epidemiology in association with climatic
changes (Semenza and Menne 2009). Closer
inspection, for example seen in a model for
WNV, indicated that mild winters, dry sum-
mers and springs (with heat waves early in the
season), and wet autumns were favorable for
the reproduction of mosquitoes (e.g., Culex
pipiens) dwelling in cities, and this tended to
concentrate vectors around water sources in
close proximity to their avian hosts, leading to
multiplication of the virus. The WNV out-
breaks in Romania and Israel, which were
associated with a heat wave early in the
summer, provided evidence to support the
model (Epstein 2001). Another example is
seen with leishmaniasis—temperature influ-
ences the biting activity rates of the sandfly
vector as well as the diapause and maturation
of L. infantum in the sandfly. The distribution
of sandflies in Europe has shifted northward
from south of latitude 458N to 498N, and
recently they have been reported in northern
Germany (Perrotey et al. 2005). Imported
cases of leishmaniasis in dogs are frequent in
central and northern Europe. If climatic
conditions make transmission possible in
northern latitudes where sandflies have ex-
panded their range, these cases can act as
further sources of infections, allowing the
development of new endemic foci (Semenza
and Menne 2009). Both WNV and Leishman-
ia are zoonotic and so will pose a previously
unrecognized health risk to human popula-
tions in these regions formerly unaffected;
thus, a better understanding of the epidemi-
ology of these pathogens, their vectors, and
the trend in vector movements are essential
for mitigation of the risks to human and
animal health. There has been recrudescence
of diseases caused by pathogens that, in the

years prior to the period of this review, had
apparently been relatively quiescent or at least
undetected. Studies indicate a spread in the
geographic range in which CDV has been
detected and, of greater concern, its emer-
gence in several new host species including
rodents and protected large carnivore species
(Meli et al. 2010; Martinez-Gutierrez and
Ruiz-Saens 2016). In recent years, a new
RHD virus serotype, RHDV2, has rapidly
spread across most of Europe (to 14 countries
during the period covered by this review) and
caused epidemics in wild and farmed rabbits
(Capucci et al. 2017). In most areas, RHDV2
appears to have efficiently and rapidly re-
placed RHDV (the old, or ‘classical’ RHDV)
during the 7-yr period assessed in this review.
Exposure to RHDV, which has been prevalent
in wild rabbit populations in Europe since its
first occurrence there in 1986, confers only
partial immunity to infection by the new virus;
thus, there have been new outbreaks of
mortality. Of concern from an EID point of
view is that the new serotype, RVHD2, causes
disease and mortality in hares as well as in
rabbits (Le Gall-Reculé et al. 2016); thus, for
the first time, extending the host species range
beyond the European rabbit. This under-
scores the importance of continued vigilance,
even for pathogens believed to be well
understood, controlled, and quiescent.

Several pathogens are having a profound
impact on biodiversity and on species of
conservation importance in Europe. Amphib-
ian ranaviruses and B. salamandrivorans pose
threats to anuran and salamander populations,
respectively, creating the risk of extirpation of
populations over large regions of Europe. The
severe epidemic of Bsal in Europe is likely the
result of the global trade in amphibians, which
introduced Bsal into naı̈ve amphibian popu-
lations (Martel et al. 2013). Wildlife popula-
tions globally may experience numerous
stressors including climate change, reduced
or fragmented habitat, reduced genetic vari-
ability, diminished food supplies, hunting
pressure, and increased human encroachment
on the landscape; all of these can weaken
resistance and increase susceptibility to dis-
ease. These stressors are each of importance
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for European wildlife; however, incursion of
new pathogens also appears to be a significant
driver of EIDs in Europe. Of the 25 EID
threats in Table 2, 24% are from incursions of
pathogens from other continents, including
CCHFV, filoviruses, WNV, ASFV, CWD
prions, and Bsal. It could also be argued that
HPAI virus came from the Arctic and should
be included in this list; regardless, there is
clear evidence that Europe is at risk from
incursion of new wildlife-related pathogens
from other continents.

The information presented herein high-
lights the importance of developing systemat-
ic, integrated, regional, continental, and global
wildlife disease surveillance programs that are
linked to domestic animal and human health
surveillance as part of a One-Health approach
that recognizes and incorporates the threats to
biodiversity and wildlife conservation. A
consistent theme that emerged from this
review is the importance of ongoing disease
surveillance in wildlife; essential reasons for
this surveillance were also listed in the
Introduction. While our intent with this
review was to provide an update on changes
in each pathogen over a 7-yr span, changes
were evident across a wide range of pathogens
over this period, suggesting that drivers of
change in pathogen epidemiology, whether or
not they have yet been identified, are active in
Europe. There is a real and larger global
perspective in this regard. European home-
grown, wildlife-related pathogens are ‘ready
for export’ to other continents (e.g., lagovi-
ruses, SBV, E. multilocularis, L. infantum, and
M. bovis) and, increasingly, there are also
incursions of pathogens into Europe from the
four points of the compass: Africa to the south
(ASFV, CCHFV, filoviruses, WNV); Asia to
the east (AIV, Bsal); the Arctic to the north
(AIV in birds and seals, morbilliviruses, CDV);
and the Americas to the west (CWD prions).
Europe is a crossroads for global, wildlife-
related diseases, and the movement of the
causative pathogens into and across the highly
developed and human-dominated continent
may not be surprising. Pathogens may move
spatially through populations; however, the
mobility of wild species carrying pathogens in

Europe is also noteworthy, with migrating
insects (vectors), birds, and marine mammals,
and large land-based vertebrates that can
travel hundreds of kilometers (e.g., wolves,
foxes, raccoon dogs). If Europeans deem it
important to monitor the health of their
natural environments, then there is a con-
comitant requirement to monitor the patho-
gens in the wildlife inhabiting those
landscapes and to assess how these are
changing over time. In our increasingly linked
world, the movement and spread of pathogens
between species and across geographic re-
gions requires integrated monitoring and
vigilance at regional, continental, and global
scales. This review highlights the importance
of the surveillance of wildlife diseases in
Europe at a level that complements the
current investment in surveillance of domestic
animal and human health. Moreover, given
disease transmission among human, domestic
animal, and wildlife populations, it is essential
that health surveillance of these three popu-
lations be well integrated. In line with the
One-Health principle, development of inte-
grated surveillance networks will improve
preparedness for future threats to the health
of wildlife, domestic animals, and humans.
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Le Gall-Reculé G, Zwingelstein F, Laurent S, De
Boisseson C, Portejoie Y, Rasschaert D. 2003.
Phylogenetic analysis of rabbit haemorrhagic disease
virus in France between 1993 and 2000, and the
characterisation of RHDV antigenic variants. Arch
Virol 148:65–81.
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