Open Access
How to translate text using browser tools
1 June 2004 Sex and Age Related Habitat Selection and Mass Dynamics of Daubenton's Bats Myotis daubentonii (Kuhl, 1817) Hibernating in Natural Conditions
Tomasz Kokurewicz
Author Affiliations +
Abstract

The selection of optimal hibernation temperature (TH) was possible by bats changing both the distance at which they roosted from the mine entrance (D) (TH versus D; rs= 0.73, n = 615, P < 0.001), and the height of hibernation place (H) (TH vs. H; rs= 0.16, n = 412, P < 0.01). Bats were able to select areas of high relative humidity (RH) by roosting in low temperature (RH vs. TH; rs= -0.26, n = 366, P < 0.001) and/or by selecting hibernation places situated lower on the mine walls (RH vs. H; rs= -0.61, n = 280, P < 0.001). Sub-adult bats (identified by presence of the black chin spot) were found to hibernate at significantly lower temperatures (Z = -3.1, n1 = 164, n2 = 41, P < 0.01) and in places situated lower on the mine walls (Z = -2.2, n1 = 164, n2, = 41, P < 0.05) than adult individuals. In March sub-adults hibernated closer to the entrance than adult individuals (χ2 = 8.18, d.f. = 1, P < 0.01). The difference in average body condition index between sub-adult and adult bats recorded in March (one-way ANOVA, F = 6.56, error d.f. = 51, P < 0.05) made individuals in their first year of life more prone to starvation at the end of hibernation period. In this month the significantly smaller distance of hibernation place of sub-adult individuals from the mine entrance (Z = -2.7, n1 = 58, n2, = 19, P < 0.01), resulted in significantly lower hibernation temperature, making them more endangered by predation of mammalian and avian species than adult bats hibernating deeper in the mine. The linear (r = 0.87, d.f. = 30, P < 0.001) relationship between body mass at the beginning and end of hibernation (November and March) of uniquely marked individuals indicates these bats did not forage in winter and their energy use was exclusively dependent on fat reserves accumulated prior to hibernation. The significant relationship between body mass in November and total mass loss (r = 0.59, d.f. = 30, P < 0.001) could indicate the possibility of existence of another factor, or group of factors, that could increase the energy use in hibernating M. daubentonii. These may include mating and/or energy costly defence against predators.

LITERATURE CITED

1.

E. L. P. Anthony 1988. Age determination in bats. Pp. 47–58, in Ecological and behavioral methods for the study of bats ( T. H. Kunz , ed.). Smithsonian Institution Press, Washington D.C., 533 pp. Google Scholar

2.

M. I. Avery 1985. Winter activity of pipistrelle bats. Journal of Animal Ecology, 54: 721–738. Google Scholar

3.

E. Bagrowska-Urbańczyk , and Z. Urbańczyk . 1983. Structure and dynamics of a winter colony of bats. Acta Theriologica, 28: 183–196. Google Scholar

4.

J. P. Bekker 1988. Watervleermuis Myotis daubentoni als prooi van steenmarter Martes foina in ondergrondse mergelgroeven. Lutra, 31: 82–85. Google Scholar

5.

J. J. Bezem , J. W. Sluiter , and P. F. van Heerdt . 1960. Population statistics of five species of the genus Myotis and one of the genus Rhinolophus, hibernating in the caves of S. Limburg. Archives Néerlandaises de Zoologie, 13: 511–539. Google Scholar

6.

P. Bilke (1978): Winterquartier von Myotis myotis im Bodengeröll. Nyctalus (N.F.), 2: 74 [not seen, cited after NAGEL and NAGEL, 1991]. Google Scholar

7.

W. Bogdanowicz 1990. Geographic variation and taxonomy of Daubenton's bat, Myotis daubentoni, in Europe. Journal of Mammalogy, 71: 205–218. Google Scholar

8.

W. Bogdanowicz 1992. Sexual dimorphism in size of the skull in European Myotis daubentoni (Mammalia: Chiroptera). Pp. 17–25, in Prague studies in mammalogy ( I. Horáček and V. Vohralík , eds.). Charles University Press, Praha, xxi + 1–245. Google Scholar

9.

W. Bogdanowicz 1994. Myotis daubentonii. Mammalian Species, 475: 1–9. Google Scholar

10.

W. Bogdanowicz, and Z. Urbańczyk 1983. Some ecological aspects of bats hibernating in city of Poznań. Acta Theriologica, 28: 371–385. Google Scholar

11.

M. R. Brigham 1987. The significance of winter activity by the big brown bat (Eptesicus fuscus): the influence of energy reserves. Canadian Journal of Zoology, 65: 1240–1242. Google Scholar

12.

R. C. Burbank , and J. Z. Young . 1934. Temperature changes and winter sleep of bats. Journal of Physiology, 82: 459–467. Google Scholar

13.

C. D. Burnett 1983. Geographic and secondary sexual variation in the morphology of Eptesicus fuscus. Annals of Carnegie Museum, 52: 139–162. Google Scholar

14.

C. D. Burnett , and T. H. Kunz . 1982. Growth rates and age estimation in Eptesicus fuscus and comparison with Myotis lucifugus. Journal of Mammalogy, 63: 33–41. Google Scholar

15.

S. Daan 1973. Activity during natural hibernation in three species of vespertilionid bats. Netherlands Journal of Zoology, 23: 1–71. Google Scholar

16.

W. H. Davis , and H. B. Hitchcock . 1965. Biology and migration of the bat, Myotis lucifugus, in New England. Journal of Mammalogy, 46: 296–313. Google Scholar

17.

A. C. Entwistle , P. A. Racey , and J. R. Speakman . 1998. The reproductive cycle and determination of sexual maturity in male brown long-eared bats, Plecotus auritus (Chiroptera: Vespertilionidae). Journal of Zoology (London), 244: 1–63. Google Scholar

18.

W. G. Ewing, E. H. Studier, and M. J. O'Farrell (1970. Autumn fat deposition and gross body composition in three species of Myotis. Comparative Biochemistry and Physiology, 36: 119–129. Google Scholar

19.

J. Fabiszewski 1985. Szata roślinna. Pp. 191–235, in Karkonosze Polskie ( A. Jahn , ed.). Polska Akademia Nauk, Wrocław, 566 pp. Google Scholar

20.

M. B. Fenton 1970. Population studies of Myotis lucifugus (Chiroptera: Vespertilionidae) in Ontario. Life Sciences Contributions Royal Ontario Museum, 77: 1–34. Google Scholar

21.

J. S. Findley 1970. Phenetic relationships in the genus Myotis. Bijdragen tot de Dierkunde, 40: 26–29. Google Scholar

22.

J. Gaisler 1966. A tentative ecological classification of colonies of the European bats. Lynx, 6: 35–39. Google Scholar

23.

J. Gaisler 1970. Remarks on the thermopreferendum of Palearctic bats in their natural habitats. Bijdragen tot de Dierkunde, 40: 33–36. Google Scholar

24.

H. Geiger , M. Lechnert , and C. Kallasch . 1996. Zur Alterseinstufung von Wasserfledermäusen (Myotis daubentoni) mit Hilfe des Unterlippen-Hecks (‘chin-spot’). Nyctalus (N.F.), 6: 23–28. Google Scholar

25.

D. R. Griffin 1986. Listening in the dark. Cornell University Press, Ithaca, xv + 415 pp. Google Scholar

26.

W. Harmata 1973. The thermopreferendum of some species of bats (Chiroptera) in natural conditions. Zeszyty Naukowe Uniwersytetu Jagiellońskiego, 332, Prace Zoologiczne, 19: 127–141. Google Scholar

27.

W. Harmata 1985. The length of awakening time from hibernation of three species of bats. Acta Theriologica, 30: 321–323. Google Scholar

28.

W. Harmata 1987. The frequency of winter sleep interruptions in two species of bats hibernating in limestone tunnels. Acta Theriologica, 32: 331–332. Google Scholar

29.

C. Harrje 1994. Etho-ökologische Untersuchung der ganzjährigen Aktivitt von Wasserfledermäusen (Myotis daubentoni Kuhl, 1819) am Winterquartier. Mitteilungen Naturwissenschaftlichen Gesellschaft Schaffhausen, 39: 15–52. Google Scholar

30.

C. F. Herreid 1963. Survival of a migratory bat at different temperatures. Journal of Mammalogy, 44: 431–133. Google Scholar

31.

R. J. Hock 1951. The metabolic rates and body temperatures of bats. Biological Bulletin, 101: 289–299. Google Scholar

32.

S. A. Johnson , V. Brack , and R. E. Rolley . 1998. Overwinter weight loss of Indiana bats (Myotis sodalis) from hibernacula subject to human visitation. The American Midland Naturalist, 139: 255–261. Google Scholar

33.

G. Jones , and T. Kokurewicz . 1994. Sex and age variation in echolocation calls and flight morphology of Daubenton's bats Myotis daubentonii. Mammalia, 58: 41–50. Google Scholar

34.

T. Kokurewicz 1990. Hibernation of two age classes of Myotis daubentoni (Kuhl, 1819) in the nature reserve “Nietoperek” (W Poland) and effect of microclimate on cluster formation. Bat Research News, 31: 43. Google Scholar

35.

T. Kokurewicz 1991. Materiały do chiropterofauny Polskich Karkonoszy. Prace Karkonoskiego Towarzystwa Naukowego, 53: 104–116. Google Scholar

36.

T. Kokurewicz 1995. Increased population of Daubenton's bat Myotis daubentoni (Kuhl, 1819) (Chiroptera: Vespertilionidae) in Poland. Myotis, 32–33: 155–161. Google Scholar

37.

T. Kokurewicz 1999. Hibernation ecology of Daubenton's bat Myotis daubentonii (Kuhl, 1817). Ph.D. Thesis, Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, 141 pp. Google Scholar

38.

T. Kokurewicz , and J. Bartmańska . 1992. Early sexual maturity in males of Daubenton's bat (Myotis daubentoni (Kuhl, 1819) (Chiroptera: Vespertilionidae); field observations and histological studies on the genitalia. Myotis, 30: 95–108. Google Scholar

39.

T. Kokurewicz , and N. Kováts . 1989. Interpopulation differences in thermopreferendum of the lesser horseshoe bat, Rhinolophus hipposideros Bechstein, 1800 (Chiroptera: Rhinolophidae) in selected areas of Poland and Hungary. Myotis, 27: 131–137. Google Scholar

40.

J. Kondracki 1981. Geografia fizyczna Polski. PWN, Warszawa, 464 pp. Google Scholar

41.

A. Krzanowski 1961. Weight dynamics of bats wintering in the cave at Puławy (Poland). Acta Theriologica, 4: 249–264. Google Scholar

42.

B. Kuipers , and S. Daan . 1970. “Internal migration” of hibernating bats: response to seasonal variation in cave microclimate. Bijdragen tot de Dierkunde, 40: 51–55. Google Scholar

43.

T. H. Kunz 1982. Roosting ecology. Pp. 1–16, in Ecology of bats ( T. H. Kunz , ed.). Plenum Press, New York, 425 pp. Google Scholar

44.

T. H. Kunz , J. A. Wrazen , and C. D. Burnett . 1998. Changes in body mass and fat reserves in prehibernating little brown bat (Myotis lucifugus). Ecoscience, 5: 8–17. Google Scholar

45.

A. N. Kurskov 1981. Rukokrylye Belorussii. Nauka i Technika, Minsk, 136 pp. Google Scholar

46.

M. Lemaire , J. J. Chaut , and L. Arthur . 1994. 400 cadavres dans un site d'hibernation pollue. Pp. 129–133, in Actes des Cinquièmes Recontres Nationales ‘Chauves-Souris’. Muséum d'Histoire de Bourges et Société Française pour l'Ètude et la Protection des Mammifères, Bourges. Google Scholar

47.

G. Lesiński 1986. Ecology of bats hibernating underground in Central Poland. Acta Theriologica, 31: 507–521. Google Scholar

48.

G. Lesiński 1990. Changes in numbers of Myotis daubentoni (Kuhl, 1819) in autumn shelters and the effect of disturbance. Acta Theriologica, 35: 364–368. Google Scholar

49.

K. Lundberg , and R. Gerell . 1986. Territorial advertisement and mate attraction in the bat Pipistrellus pipistrellus. Ethology, 71: 115–124. Google Scholar

50.

M. Masing 1987. Zimnee peredviženie rukokrylych meždu ubežiščami. Učonye Zapiski Tartuskogo Gosudarstvennogo Universiteta 769, Trudy po Zoologii, 15: 41–60 [not seen, cited after BOGDANOWICZ, 1994]. Google Scholar

51.

B. K. McNab 1974. The behavior of temperate cave bats in a subtropical environment. Ecology, 55: 943–958. Google Scholar

52.

A. Nagel , and R. Nagel . 1991. How do bats choose optimal temperatures for hibernation? Comparative Biochemistry and Physiology, 99 A : 323–326. Google Scholar

53.

E. S. Nyholm 1965. Zur Ökologie von Myotis mystacinus (Leisl.) und Myotis daubentoni (Leisl.) (Chiroptera). Annales Zoologici Fennici, 2: 77–123. Google Scholar

54.

K. J. Park , G. Jones , R. D. Ransome . 1999. Winter activity of a population of greater horseshoe bats (Rhinolophus ferrumequinum). Journal of Zoology (London), 248: 419–427. Google Scholar

55.

K. J. Park , G. Jones , R. D. Ransome . 2000. Torpor, arousal and activity of hibernating greater horseshoe bats (Rhinolophus ferrumequinum). Functional Ecology, 14: 580–588. Google Scholar

56.

E. Petit 1998. Population structure and post-glacial history of the noctule bat Nyctalus noctula (Chiroptera, Mammalia). Ph.D. Thesis Friedrich-Alexander-Universitt, Erlangen-Nrnberg, 105 pp. Google Scholar

57.

J. Piasecki 1997. Thermal periods of the year (1951–80). Map no. 48, in The atlas of Silesia. Wrocław University, Wrocław, 117 maps. Google Scholar

58.

M. Průcha , and V. Hanzal . 1989. Some aspects of hibernation of bats wintering in the Bohemian Karst (central Bohemia, Czechoslovakia). Acta Universitatis Carolinae, Biologica, 33: 315–333. Google Scholar

59.

P. A. Racey , and J. R. Speakman . 1987. The energy costs of pregnancy and lactation in heterothermal bats. Symposia of the Zoological Society of London, 57: 107–125. Google Scholar

60.

P. A. Racey , S. M. Swift , J. Rydell , and L. Brodie . 1998. Bats and insects over two Scottish rivers with contrasting nitrate status. Animal Conservation, 1: 195–202. Google Scholar

61.

G. Radzicki , J. Hejduk , and J. Bańbura . 1999. Tits (Parus major and Parus caeruleus) preying upon hibernating bats. Ornis Fennica, 76: 93–94. Google Scholar

62.

R. D. Ransome 1968. The distribution of the greater horseshoe bat, Rhinolophus ferrumequinum, during hibernation, in relation to environmental factors. Journal of Zoology (London), 154: 77–112. Google Scholar

63.

R. D. Ransome 1971. The effect of ambient temperature on the arousal frequency of the hibernating Greater horseshoe bat, Rhinolophus ferrumequinum, in relation to site selection and the hibernation state. Journal of Zoology (London), 164: 353–371. Google Scholar

64.

R. D. Ransome 1985. Homeostatic control of body food reserves in hibernating greater horseshoe bats. Bat Research News, 26: 70. Google Scholar

65.

R. D. Ransome 1990. The natural history of hibernating bats. Christopher Helm, London, xxi + 235 pp. Google Scholar

66.

P. W. Richardson 1994. A new method of distinguishing Daubenton's bats (Myotis daubentonii) up to one year old from adults. Journal of Zoology (London), 223: 307–344. Google Scholar

67.

H. Roer 1969. Zur Ernhrungsbiologie von Plecotus auritus (L.) (Chiroptera). Bonner Zoologische Beiträge, 20: 378–383. Google Scholar

68.

J. Romanowski , and G. Lesiński . 1988. Kuny polują na nietoperze. Wszechświat, 89 (9): 210. Google Scholar

69.

O. Ryberg 1947. Studies on bats and bat parasites. Bokförlaget Svensk Natur, Stockholm, 330 pp. Google Scholar

70.

J. R. Speakman 1991. Daubenton's bat Myotis daubentoni. Pp. 108–111, in The handbook of British mammals ( G. B. Corbet and S. Harris , eds.). Blackwell Scientific Publications, Oxford, 588 pp. Google Scholar

71.

J. R. Speakman 1997. Factors influencing the daily energy expenditure of small mammals. Proceedings of Nutrition Society, 56: 1119–1136. Google Scholar

72.

J. R. Speakman , and P. A. Racey . 1986. The influence of body condition on sexual development of male brown long-eared bats (Plecotus auritus) in the wild. Journal of Zoology (London), 210: 515–525. Google Scholar

73.

J. R. Speakman , and P. A. Racey . 1989. Hibernal ecology of the pipistrelle bat: energy expenditure, water requirements and mass loss, implications for survival and the function of winter emergence flights. Journal of Animal Ecology, 58: 797–813. Google Scholar

74.

J. R. Speakman , and P. A. Racey . 1991. No cost of echolocation for bats in flight. Nature, 350 (6317): 421–123. Google Scholar

75.

J. R. Speakman , and A. Rowland . 1999. Preparing for inactivity: how insectivorous bats deposit a fat store for hibernation. Proceedings of Nutrition Society, 58: 123–131. Google Scholar

76.

J. R. Speakman , Webb , P. I ., and P. A. Racey . 1991. Effects of disturbance on the energy expenditure of hibernating bats. Journal of Applied Ecology, 28: 1087–1104. Google Scholar

77.

R. E. Stebbings 1966. A population study of bats of the genus Plecotus. Journal of Zoology (London), 150: 53–75. Google Scholar

78.

D. W. Stephens 1981. Logic of risk-sensitive forging preferences. Animal Behaviour, 29: 628–629. Google Scholar

79.

P. P. Strelkov 1962. The peculiarities of reproduction in bats (Vespertilionidae) near the northern border of their distribution. Pp. 306–311, in Proceedings of the International Symposium on Methods of Mammalogical Investigation, Brno, Czechoslovakia, 1960 ( J. Kratochvíl and J. Pelikán, eds.). Československá Akademie Věd, Praha, 383 pp. [not seen, cited after BOGDANOWICZ, 1994]. Google Scholar

80.

P. P. Strelkov 1969. Migratory and stationary bats (Chiroptera) of the European part of the Soviet Union. Acta Zoologica Cracoviensia, 14: 393–439. Google Scholar

81.

D. W. Thomas 1995. Hibernating bats are sensitive to nontactile human disturbance. Journal of Mammalogy, 76: 940–946. Google Scholar

82.

D. W. Thomas and F. Geiser . 1997. Periodic arousals in hibernating mammals: is evaporative water loss involved? Functional Ecology, 11: 585–591. Google Scholar

83.

D. W. Thomas , D. Cloutier , and D. Gagne . 1990a. Arrythmic breathing, apnea and non-steady state oxygen uptake in hibernating little brown bats (Myotis lucifugus). Journal of Experimental Biology, 149: 395–106. Google Scholar

84.

D. W. Thomas , M. Dorais , and J. M. Bergeron . 1990b. Winter energy budgets and cost of arousals for hibernating little brown bats, Myotis lucifugus. Journal of Mammalogy, 71: 475–179. Google Scholar

85.

P. Tryjanowski 1997. Food of the stone marten (Martes foina) in Nietoperek Bat Reserve. Zeitschrift für Säugetierkunde, 62: 318–320. Google Scholar

86.

J. W. Twente 1955. Some aspects of habitat selection and other behaviour of cavern dwelling bats. Ecology, 36: 706–732. Google Scholar

87.

J. W. Twente , and V. Brack . 1985. The duration of the period of hibernation of three species of vespertilionid bats. I. Field studies. Canadian Journal of Zoology, 63: 2952–2954. Google Scholar

88.

J. W. Twente , J. Twente , and V. Brack . 1985. The duration of the period of hibernation of three species of vespertilionid bats. II. Laboratory studies. Canadian Journal of Zoology, 63: 2955–2961. Google Scholar

89.

Z. Urbańczyk 1981. Fledermäuse (Chiroptera) in der Nahrung des Marders (Martes sp.). Säugetierkundliche Mitteilungen, 29: 77–79. Google Scholar

90.

Z. Urbańczyk 1991. Hibernation of Myotis daubentoni and Barbastella barbastellus in Nietoperek bat reserve. Myotis, 29: 115–120. Google Scholar

91.

P. I. Webb , J. R. Speakman , and P. A. Racey . 1996. How hot is a hibernaculum? A review of the temperatures at which bats hibernate. Canadian Journal of Zoology, 74: 761–765. Google Scholar

92.

J. O. Whitaker Jr ., R. K. Rose , and T. M. Padgett . 1997. Food of the red bat Lasiurus borealis in winter in the great dismal swamp, North Carolina and Virginia. The American Midland Naturalist, 137:408–411. Google Scholar

93.

C. B. Williams 1939. An analysis of four years captures of insects in a light trap. Part 1. Transactions of the Royal Entomological Society of London, 89: 79–132 [not seen, cited after RANSOME, 1968]. Google Scholar
© Museum and Institute of Zoology PAS
Tomasz Kokurewicz "Sex and Age Related Habitat Selection and Mass Dynamics of Daubenton's Bats Myotis daubentonii (Kuhl, 1817) Hibernating in Natural Conditions," Acta Chiropterologica 6(1), 121-144, (1 June 2004). https://doi.org/10.3161/001.006.0110
Received: 9 January 2004; Accepted: 1 May 2004; Published: 1 June 2004
KEYWORDS
habitat selection
hibernation
mass dynamics
Myotis daubentonii
predation
Back to Top