Translator Disclaimer
1 December 2003 The Abundance of Tree Holes and Their Utilization by Hole-Nesting Birds in a Primeval Boreal Forest of Mongolia
Mei-Ling Bai, Frank Wichmann, Michael Mühlenberg
Author Affiliations +
Abstract

The natural tree holes and nest holes of hole-nesting birds were surveyed in four forest types in the west Khentii Mountains of NE Mongolia. The utilization patterns of species, size and condition of trees, as well as hole types, were investigated. The average density of tree holes in the study area approached 30 holes/ha, while that of hole-nesting birds was 2.4 nests/ha only. The riparian mixed forest had the greatest number of species and individuals of hole-nesting birds, while the spruce-fir forest had the lowest numbers. Excavating bird species preferred larger, deciduous trees, and snags. Non-excavators did not select holes according to tree species or size, but preferred holes in living trees and branch holes. In view of the low occupancy of holes among the four habitats, we suggest that the density of secondary hole-nesting birds is not limited by availability of holes in the study area.

REFERENCES

1.

R. Alatalo , A. Carlson , A. Lundberg 1988. Nest hole size and clutch size of Pied Flycatchers Ficedula hypoleuca breeding in natural tree-holes. Ornis Scand. 19: 317–319. Google Scholar

2.

P. Angelstam , G. Mikusiński 1994. Woodpecker assemblages in natural and managed boreal and hemiboreal forest — a review. Ann. Zool. Fenn. 31: 157–172. Google Scholar

3.

G. Aulén 1988. Nest site selection of the White-backed Woodpecker Dendrocopos leucotos and Great Spotted Woodpecker D. major in central Sweden. In: G. Aulén (ed.). Ecology and distribution history of the White-backed Woodpecker Dendrocopos leucotos in Sweden. Swedish Univ. Agricult. Sci., Rep. 14, Uppsala, pp. 195–220. Google Scholar

4.

T. T. Brandeis , M. Newton , G. M. Filip , E. C. Cole 2002. Cavity nesters habitat development in artificially made Douglas fir snags. J. Wildl. Manage. 66: 625–633. Google Scholar

5.

A. Carlson , U. Sandström , O. Olsson 1998. Availability and use of natural tree holes by hole-nesting birds in a Swedish deciduous forest. Ardea 86: 109–119. Google Scholar

6.

T. Fujimori 2001. Ecological and silvicultural strategies for sustainable forest management. Elsevier, Amsterdam. Google Scholar

7.

L. R. Grosenbaugh 1952. Plotless timber estimates new, fast, easy. J. Forestry 50: 32–37. Google Scholar

8.

J. S. Gunn , J. M. Hagan 2000. Woodpecker abundance and tree use in uneven-aged managed, and unmanaged, forest in northern Maine. Forest Ecol. Manage. 126: 1–12. Google Scholar

9.

L. von Haartman 1957. Adaptation in hole-nesting birds. Evolution 11: 339–347. Google Scholar

10.

A. J. Hansen , T. A. Spies , F. J. Swanson , J. L. Ohmann 1991. Lessons from natural forests: Implications for conserving biodiversity in natural forests. BioScience 41: 382–392. Google Scholar

11.

K. A. Hobson , J. Schieck 1999. Changes in bird communities in boreal mixedwood forest: Harvest and wildfire effects over 30 years. Ecol. Applications 9: 849–863. Google Scholar

12.

L. Imbeau , M. Mönkkönen , A. Desrochers 2001. Long-term effects of forestry on birds of the eastern Canadian boreal forests: a comparison with Fennoscandia. Conserv. Biol. 15: 1151–1162. Google Scholar

13.

L. Imbeau , J. P. L. Savard , R. Gagnon 1999. Comparing bird assemblages in successional black spruce stands originating from fire and logging. Can. J. Zool. 77: 1850–1860. Google Scholar

14.

P. N. Johnson 1994. Selection and use of nest sites by barn owls in Norfolk, England. J. Raptor Res. 28: 149–153. Google Scholar

15.

K. Martin , J. M. Eadie 1999. Nest webs: A community-wide approach to the management and conservation of hole-nesting forest birds. Forest Ecol. Manage. 115: 243–257. Google Scholar

16.

A. P. Møller 1989. Parasites, predators and next boxes: fact and artefacts in nest box studies of birds? Oikos 56: 421–124. Google Scholar

17.

A. P. Møller 1994. Facts and artefacts in nest-box studies: Implications for studies of birds of prey. J. Raptor Res. 28: 143–148. Google Scholar

18.

I. Newton 1994. The role of nest site in limiting the numbers of hole-nesting birds: a review. Biol. Conserv. 70: 265–276. Google Scholar

19.

S. G. Nilsson 1984. Clutch size and breeding success of the Pied Flycatcher Ficedula hypoleuca in natural tree-holes. Ibis 126: 407–410. Google Scholar

20.

G. Noeke 1989. Baumhöhlen in Buchenbeständen — welche Rolle spielt das Bestandesalter? LÖLF-Mitteilungen 3: 20–22. Google Scholar

21.

G. Noeke 1990. Abhängigkeit der Dichte natürlicher Baumhöhlen von Bestandesalter und Totholzangebote. In: B. Stracke (ed.). Ökologische Bedeutung von Alt- und Totholz in Wald und Feldflur. NZ NRW Seminarberichte H. 10, Naturschutzzentrum Nordrhein-Westfalen, Recklinghausen, pp. 51–53. Google Scholar

22.

C. G. Parks , D. A. Conklin , L. Bednar , H. Maffei 1999. Woodpecker use and fall rates of snags created by killing ponderosa pine infected with dwarf mistletoe. U.S. Dep. Agriculture, Forest Serv., Pacific Northwest Res. Station, Portland. Google Scholar

23.

H. Pöysa , S. Pöysa 2002. Nest-site limitation and density dependence of reproductive output in the Common Goldeneye Bucephala clangula: implications for the management of cavity-nesting birds. J. Applied Ecol. 39: 502–510. Google Scholar

24.

K. L. Purcell , J. Verner , L. W. Oring 1997. A comparison of the breeding ecology of birds nesting in boxes and tree cavities. Auk 114: 646–656. Google Scholar

25.

J. Rolstad , E. Rolstad , O. Saeteren 2000. Black woodpecker nest sites: Characteristics, selection, and reproductive success. J. Wildlife Manage. 64: 1053–1066. Google Scholar

26.

L. M. Sachslehner 1995. Reviermerkmale und Brutplatzwahl in einer Naturhöhlen-Population des Halsbandschnäppers Ficedula albicollis im Wienerwald, Österreich. Vogelwelt 116: 245–254. Google Scholar

27.

U. Sandström 1992. Holes in trees: their occurrence, formation and importance for hole-nesting birds in relation to silvicultural practice. Swedish Univ. Agricultural Sci., Rep. 24, Uppsala. Google Scholar

28.

C. H. Sekercioglu 2002. Effects of forestry practices on vegetation structure and bird community of Kibale National Park, Uganda. Biol. Conserv. 107: 229–240. Google Scholar

29.

B. Semel , P. W. Sherman 2001. Intraspecific parasitism and nest-site competition in Wood Ducks. Anim. Behav. 61: 787–803. Google Scholar

30.

I. Stenberg 1996. Nest site selection in six woodpecker species. Fauna Norvegica Ser. C Cinclus 19: 21–38. Google Scholar

31.

D. J. Twedt , J. L. Henne-Kerr 2001. Artificial cavities enhance breeding bird densities in managed Cottonwood forests. Wildlife Soc. Bull. 29: 680–687. Google Scholar

32.

Balen J. H. van , C. J. H. Booy , J. A. van Franeker , E. R. Osieck 1982. Studies on hole-nesting birds in natural nest sites 1. Availability and occupation of natural nest sites. Ardea 70: 1–24. Google Scholar

33.

W. Walankiewicz 1991. Do secondary hole-nesting birds suffer more from competition for holes or from predation in a primeval deciduous forest? Nat. Areas J. 11: 203–212. Google Scholar

34.

J. R. Waters , B. R. Noon , J. Verner 1990. Lack of nest site limitation in a hole-nesting bird community. J. Wildl. Manage. 54: 239–245. Google Scholar

35.

T. Wesołowski 1989. Nest-sites of hole-nesters in a primeval temperate forest (Białowieza National Park, Poland). Acta Ornithol. 25: 321–351. Google Scholar

36.

T. Wesołowski , M. Stańska 2001. High ectoparasite loads in hole-nesting birds: A nestbox bias? J. Avian Biol. 32: 281–285. Google Scholar

37.

K. L. Wiebe 2001. Microclimate of tree cavity nests: Is it important for reproductive success in Northern Flickers? Auk 118: 412–421. Google Scholar
Mei-Ling Bai, Frank Wichmann, and Michael Mühlenberg "The Abundance of Tree Holes and Their Utilization by Hole-Nesting Birds in a Primeval Boreal Forest of Mongolia," Acta Ornithologica 38(2), 95-102, (1 December 2003). https://doi.org/10.3161/068.038.0205
Received: 1 April 2003; Accepted: 1 November 2003; Published: 1 December 2003
JOURNAL ARTICLE
8 PAGES


SHARE
ARTICLE IMPACT
Back to Top