Open Access
How to translate text using browser tools
1 December 2007 Physiological Condition of Incubating and Brood Rearing Female Great Tits Parus major in Two Contrasting Habitats
Priit Kilgas, Vallo Tilgar, Marko Mägi &, Raivo Mänd
Author Affiliations +
Abstract

Little is known about the physiological causes and consequences of habitat choice decisions in birds. We compared size-corrected body mass, hematocrit, plasma albumin, beta- and gamma-globulin and triglyceride concentrations, as well as the albumin/globulin ratio of female Great Tits breeding in deciduous and coniferous forests in Estonia. Females were sampled during incubation and during the chick-rearing period. Whereas the nest box occupation rate and clutch size were higher in the deciduous habitat, the female nutritional condition during incubation was better in the coniferous habitat. This habitat difference in condition was not explained by the differences in the start of egg-laying or clutch size. Females lost more mass from incubation to the chick-rearing stage in the coniferous than in the deciduous forests. Although the values of most blood parameters changed from incubation to the chick-rearing stage, no habitat-related change was observed. There were no habitat differences in the number and quality of fledglings or in female condition during the chick-rearing period. Our results indicate that incubating female Great Tits are in a worse nutritional state in the preferred deciduous habitat fragments than those in the non-preferred coniferous habitat. However, habitat-related differences in condition during incubation seem to be unrelated to habitat-specific reproductive decisions.

REFERENCES

1.

C. Acquarone , M. Cucco , M. Malacarne 2002. Annual variation of immune condition in the Hooded Crow (Corvus corone comix). J. Ornithol. 143: 351–355. Google Scholar

2.

J. Bańbura , M. Bańbura , A. Kaliński , J. Skwarska , R. Słomczyński , J. Wawrzyniak , P. Zieliński 2007. Habitat and year-to-year variation in haemoglobin concentration in nestling blue tits Cyanistes caeruleus. Comp. Biochem. Physiol. A 148: 572–577. Google Scholar

3.

J. Battin 2004. When good animals love bad habitats: ecological traps and the conservation of animal populations. Conserv. Biol. 18: 1482–1491. Google Scholar

4.

R. M. Catalan , J. F. Haeger 1996. Breeding patterns of the great tit (Parus major) in a pine plantation and holm oak forest in a Mediterranean region (southern Spain). Rev. Ecol. — Terre Vie 51: 341–357. Google Scholar

5.

D. J. Cerasale , C. G. Guglielmo 2006. Dietary effects on prediction of body mass changes in birds by plasma metabolites. Auk 123: 836–846. Google Scholar

6.

W. O. Challenger , T. D. Williams , J. K. Christians , F. Vézina 2001. Follicular development and plasma yolk precursor dynamics through the laying cycle in the European Starling (Sturnus vulgaris). Physiol. Biochem. Zool. 74: 356– 365. Google Scholar

7.

M. Cichoń 2001. Body-mass changes in female Collared Flycatchers: state-dependent strategy. Auk 118: 550–552. Google Scholar

8.

B. H. Coles 1997. Avian medicine and surgery. Blackwell Science, Oxford. Google Scholar

9.

S. Cramp , C. M. Perrins (eds). 1993. Handbook of the birds of Europe, the Middle East and North Africa. Vol. VII. Oxford Univ. Press, Oxford. Google Scholar

10.

R. M. Ewers , R. K. Didham 2006. Confounding factors in the detection of species responses to habitat fragmentation. Biol. Rev. 81: 117–142. Google Scholar

11.

L. A. Freed 1981. Loss of mass in breeding wrens: stress or adaptation? Ecology 62: 1179–1186. Google Scholar

12.

E. García-Berthou 2001. On the misuse of residuals in ecology: testing regression residuals vs. the analysis of covariance. J. Anim. Ecol. 70: 708–711. Google Scholar

13.

J. Gasparini , K. D. McCoy , T. Tveraa , T. Boulinier 2002. Related concentrations of specific immunoglobulins against lyme disease agent Borrelia burgdorferi sensu lato in eggs, young and adults of the kittiwake (Rissa tridactyla). Ecol. Lett. 5: 519–524. Google Scholar

14.

K. L Gayathri , S. N. Hedge 2006. Alteration in haematocrit values and plasma protein fractions during the breeding cycle of female pigeons, Columba livia. Anim. Reprod. Sci. 91: 133–141. Google Scholar

15.

S. A. Hanssen , D. Hasselquist , I. Folstad , Erikstad , E. K. 2005. Cost of reproduction in a long-lived bird: incubation effort reduces immune function and future reproduction. Proc. R. Soc. B 272: 1039–1046. Google Scholar

16.

P. Hõrak , S. Jenni-Eiermann , I. Ots , L. Tegelmann 1998a. Health and reproduction: the sex-specific clinical profile of great tits (Parus major) in relation to breeding. Can. J. Zool. 76: 2235–2244. Google Scholar

17.

P. Hõrak , I. Ots , A. Murumägi 1998b. Haematological health state indices of reproducing Great Tits: a response to brood size manipulation. Funct. Ecol. 12: 750–756. Google Scholar

18.

P. Hõrak , L. Saks , U. Karu , I. Ots , P. F. Surai , K. J. McGraw 2004. How coccidian parasites affect health and appearance of greenfinches. J. Anim. Ecol. 73: 935–947. Google Scholar

19.

S. Jenni-Eiermann , L. Jenni 1997. Diurnal variation of metabolic responses to short-term fasting in passerine birds during the postbreeding, molting and migratory period. Condor 99: 113–122. Google Scholar

20.

M. D. Johnson 2007. Measuring habitat quality: a review. Condor 109: 489–504. Google Scholar

21.

T. Kawai 1973. Clinical aspects of the plasma proteins. Igaku Shoin Ltd., Tokyo. Google Scholar

22.

M. Kern , W. Bacon , D. Long , R. J. Cowie 2005. Blood metabolite and corticosterone leves in breeding adult pied flycatchers. Condor 107: 665–677. Google Scholar

23.

P. Kilgas , R. Mänd , M. Mägi , V. Tilgar 2006. Hematological parameters in brood-rearing great tits in relation to habitat, multiple breeding and sex. Comp. Biochem. Phys. A 144: 224–231. Google Scholar

24.

H. Klomp 1980. Fluctuations and stability in Great Tit populations. Ardea 68: 205–224. Google Scholar

25.

A. Lundberg , R. V. Alatalo , A. Carlson , S. Ulfstrand 1981. Biometry, habitat distribution and breeding success in the pied flycatcher Ficedula hypoleuca. Ornis Scand. 12: 68–79. Google Scholar

26.

D. F. Mazerolle , K. A. Hobson 2002. Physiological ramifications of habitat selection in territorial male ovenbirds: consequences of landscape fragmentation. Oecologia 130: 356–363. Google Scholar

27.

J. Merilä , D. A. Wiggins 1997. Mass loss in breeding blue tits: the role of energetic stress. J. Anim. Ecol. 66: 452–460. Google Scholar

28.

M. Mägi 2007. The habitat-related variation of reproductive performance of great tits in a deciduous-coniferous forest mosaic: looking for causes and consequences. PhD Thesis, Univ. Tartu, Tartu. Google Scholar

29.

R. Mänd , V. Tilgar , A. Lõhmus , A. Leivits 2005. Providing nest boxes for hole-nesting birds —Does habitat matter? Biodivers. Conserv. 14: 1823–1840. Google Scholar

30.

I. Newton 1998. Population limitation in birds. Academic Press, London. Google Scholar

31.

I. Ots , A. B. Kerimov , E. V. Ivankina , T. A. Ilyina , P. Hõrak 2001. Immune challenge affects basal metabolic activity in wintering great tits. Proc. R. Soc. Lond. B 268: 1175–1181. Google Scholar

32.

I. Ots , A. Murumägi , P Hõrak 1998. Haematological health state indices of reproducing Great Tits: methodology and sources of natural variation. Funct. Ecol. 12: 700–707. Google Scholar

33.

J. C. Owen , M. K. Sogge , M. D. Kern 2005. Habitat and sex differences in physiological condition of breeding southwestern willow flycatchers (Empidonax traillii extimus). Auk 122: 1261–1270. Google Scholar

34.

C. M. Perrins 1991. Tits and their caterpillar food supply. Ibis 133: 49–54. Google Scholar

35.

C. Pimentel , J.-Å. Nilsson 2007. Breeding patterns of great tits (Parus major) in pine forests along the Portuguese west coast. J. Ornithol. 148: 59–68. Google Scholar

36.

N. L. Rodenhouse , T. W Sherry , R. T. Holmes 1997. Site-dependent regulation of population size: a new synthesis. Ecology 78: 2025–2042. Google Scholar

37.

S. Rytkönen , M. Orell 2001. Great tits, Parus major, lay too many eggs: experimental evidence in mid-boreal habitats. Oikos 93: 439–450. Google Scholar

38.

N. Saino , J. J. Cuervo , M. Krivacek , F. de Lope , A. P. Møller 1997. Experimental manipulation of tail ornament size affects the hematocrit of male barn swallows (Hirundo rustica). Oecologia 110: 186–190. Google Scholar

39.

N. Saino , R. Martinelli , A. P. Møller 2001. Immunoglobulin plasma concentration in relation to egg laying and mate ornamentation of female barn swallows (Hirundo rustica). J. Evol. Biol. 14: 95–109. Google Scholar

40.

J. M. Sánches-Guzmán , A. Villegas , C. Corbacho , R. Morán , A. Marzal , R. Real. 2004. Response of the haematocrit to body condition changes in Northern Bald Ibis Geronticus eremita. Comp. Biochem. Phys. A 139: 41–47. Google Scholar

41.

J. J. Sanz 1998. Effects of geographic location and habitat on breeding parameters of great tits. Auk 115: 1034–1051. Google Scholar

42.

M. A. Schlaepfer , M. C. Runge , P. W. Sherman 2002. Ecological and evolutionary traps. Trends Ecol. Evol. 17: 474– 480. Google Scholar

43.

B. Semel , P. W. Sherman 2001. Intraspecific parasitism and nest-site competition in wood ducks. Anim. Behav. 61: 787–803. Google Scholar

44.

J. A. Stamps 2006. The silver spoon effect and habitat selection by natal dispersers. Ecol. Lett. 9: 1179–1185. Google Scholar

45.

StatSoft, Inc. 2006. STATISTICA (data analysis software system), version 7.1  www.statsoft.comGoogle Scholar

46.

P. Suorsa , H. Helle , V. Koivunen , E. Huhta , A. Nikula , H. Hakkarainen 2004. Effects of forest patch size on physiological stress and immunocompetence in an area-sensitive passerine, the Eurasian treecreeper (Certhia familiaris): an experiment. Proc. R. Soc. Lond. B 271: 435–440. Google Scholar

47.

P. Suorsa , E. Huhta , A. Nikula , M. Nikinmaa , A. Jäntti , H. Helle , H. Hakkarainen 2003. Forest management is associated with physiological stress in an old-growth forest passerine. Froc. R. Soc. Lond. B 270: 963–969. Google Scholar

48.

E. Svensson , J. Merilä 1996. Molt and migratory condition in blue tits: a serological study. Condor 98: 825–831. Google Scholar

49.

L. Tummeleht , M. Mägi , P. Kilgas , R. Mänd , P. Hõrak 2006. Antioxidant protection and plasma carotenoids of incubating great tits (Parus major L.) in relation to health state and breeding conditions. Comp. Biochem. Phys. C 144: 166–172. Google Scholar

50.

J. H. van Balen 1973. A comparative study of the breeding ecology of the great tit Parus major in different habitats. Ardea 61: 1–93. Google Scholar

51.

J. H. van Balen , C. J. H. Booy , J. A. van Franeker , Osieck , E. R. 1982. Studies on hole-nesting birds in natural nest sites. 1. Availability and occupation of natural nest sites. Ardea 70: 1–24. Google Scholar

52.

B. A. Vanderkist , T. D. Williams , D. F. Bertram , L. W. Lougheed , J. L. Ryder 2000. Indirect, physiological assessment of reproductive state and breeding chronology in free-living birds: an example in the Marbled Murrelet (Brachyramphus marmoratus). Funct. Ecol. 14: 758–765. Google Scholar

53.

M. Wikelski , S. J. Cooke 2006. Conservation physiology. Trends Ecol. Evol. 21: 38–46. Google Scholar

54.

T. D. Williams 2005. Mechanisms underlying the costs of egg production. BioScience 55: 39–48. Google Scholar

55.

T. D. Williams , W. O. Challenger , J. K. Christians , M. Evanson , O. Love , F. Vézina 2004. What causes the decrease in haematocrit during egg production? Funct. Ecol. 18: 330–336. Google Scholar
Priit Kilgas, Vallo Tilgar, Marko Mägi &, and Raivo Mänd "Physiological Condition of Incubating and Brood Rearing Female Great Tits Parus major in Two Contrasting Habitats," Acta Ornithologica 42(2), 129-136, (1 December 2007). https://doi.org/10.3161/068.042.0207
Received: 1 August 2007; Accepted: 1 November 2007; Published: 1 December 2007
KEYWORDS
breeding cycle
Great Tit
habitat differences
Hematocrit
Parus major
plasma proteins
TRIGLYCERIDES
Back to Top