Genetic Variation at Microsatellite Loci in the Tropical Herb Aphelandra aurantiaca (Acanthaceae)

Authors: Pilar Suárez-Montes, Rosalinda Tapia-López, and Juan Núñez-Farfán
Source: Applications in Plant Sciences, 3(11)
Published By: Botanical Society of America
URL: https://doi.org/10.3732/apps.1500058
GENETIC VARIATION AT MICROSATELLITE LOCI IN THE TROPICAL HERB Aphelandra aurantiaca (Acanthaceae)

Pilar Suárez-Montes2, Rosalinda Tapia-López2, and Juan Nuñez-Farfán2,3

1Laboratorio de Genética Ecológica y Evolución, Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70-275, 04510 Distrito Federal, Mexico

2Laboratorio de Genética Ecológica y Evolución, Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70-275, 04510 Distrito Federal, Mexico

• Premise of the study: To assess the effect of forest fragmentation on genetic variation and population structure of Aphelandra aurantiaca (Acanthaceae), a tropical and ornamental herbaceous perennial plant, we developed the first microsatellite primers for the species.

• Methods and Results: Fourteen microsatellite markers were isolated and characterized from A. aurantiaca genomic libraries enriched for di-, tri-, and tetrancleotide repeat motifs. Polymorphism was evaluated in 107 individuals from four natural populations. Twelve out of 14 genetic markers were polymorphic. The number of alleles per locus ranged from two to 12, and the observed and expected heterozygosities ranged from 0.22 to 0.96 and from 0.20 to 0.87, respectively. Fixation indices ranged from −0.41 to 0.44.

• Conclusions: These newly developed microsatellite markers for A. aurantiaca will be useful for future population genetic studies, specifically to detect the possible loss of genetic diversity due to habitat fragmentation.

Key words: Acanthaceae; Aphelandra aurantiaca; gene flow; genetic structure; Los Tuxtlas tropical rainforest; outcrossing rate.

Aphelandra R. Br. is one of the largest genera of Acanthaceae, comprising ca. 175 species of perennial herbs, shrubs, and small trees restricted to the Neotropics (Wasshausen, 1975; Daniel, 1991). Species in this genus have colored flowering spikes (Wasshausen, 1975), and the genus is well known to horticulturists because some species are cultivated for ornamental purposes (Daniel, 1991). However, until now, no studies of molecular genetic diversity in this genus have been carried out. We focus on the understory herb A. aurantiaca (Scheidw.) Lindl., distributed from southern Mexico through Central and South America (Daniel, 1991). In Mexico, its distribution is restricted to regions with abundant rainfall such as Los Tuxtlas rainforest (Daniel, 1991), where it is one of the dominant understory species (Calvo-Iribién, 1997). The region of Los Tuxtlas, considered the northernmost limit of rainforests in the Americas, has been heavily impacted by deforestation and fragmentation (Dirzo and Miranda, 1991; Dirzo and García, 1992). Because fragmentation produces isolation between populations, it could impact their genetic structure (Chávez-Pesqueira et al., 2014), reducing genetic variation and gene flow, and increasing genetic divergence and inbreeding (Young et al., 1996). Aphelandra aurantiaca is a suitable model to study the genetic consequences of rainforest fragmentation due to the life history characteristics of the species. For example, it has a relatively short life span, which means that some generations have passed since the onset of fragmentation, and it depends on canopy cover, which is usually reduced in forest fragments. Furthermore, because A. aurantiaca’s attractive, nectar-producing flowers are pollinated by birds (Calvo-Iribién, 1997), its mating system can be affected by habitat fragmentation if this reduces species richness and abundance of pollinators (Aguilar et al., 2006). To date, little is known about its genetic structure, particularly in the context of rainforest fragmentation. Therefore, we aimed to develop variable genetic markers to elucidate the genetic diversity and structure of A. aurantiaca.

METHODS AND RESULTS

Using the DNeasy Plant Mini Kit (QIAGEN, Valencia, California, USA), we extracted genomic DNA from a single individual of A. aurantiaca for use in the isolation of microsatellite loci. A paired-end library was prepared by shearing 1 μg of genomic DNA following the standard protocol of the Illumina TruSeq DNA Library Kit (Illumina, San Diego, California, USA). Illumina sequencing was conducted on the HiSeq (Illumina) with 100-bp paired-end reads. Ten million of the resulting sequences were analyzed with the program PALFinder_v0.02.03 (Castoe et al., 2012), extracting positive reads that contained di-, tri-, tetra-, penta-, and hexanucleotide microsatellites and sending to the program Primer3 (version 2.0.0; Rozen and Skaletsky, 1999) for primer design. To avoid duplicated loci, data were filtered and only primers that occurred one or two times were included; 24 loci out of 1727 that met this criterion were chosen. Primer pairs were tested for amplification and polymorphism using DNA obtained from five different individuals from the four Los Tuxtlas
populations sampled (Appendix 1), and amplified PCR products were then separated on 4% Metaphor agarose gels (Lonza, Rockland, Maine, USA). After excluding loci that did not amplify, we selected 14 potential polymorphic loci and marked these with fluorescent labels (Table 1). The PCR amplification was carried out in a 20-μL reaction containing 2 μL of 10× PCR buffer (KCl 500 mM, Tris- HCl pH 8.3, gelatin 100 μg/mL, 1% triton, bovine serum albumin [BSA] 1.5 mg/mL), 1 μL of MgCl2 (30 mM), 2 μL of dNTPs (0.2 mM), 2 μL of DNA, 0.5 μL of each of the two primers (10 nM), 0.5 μL of Taq DNA polymerase (5 U/μL), and 12 μL of water (BIOTECMOL, Mexico City, Mexico), performed on a Thermo Scientific Hybaid Px2 thermal cycler (Thermo Scientific, Waltham, Massachusetts, USA) using the following conditions: 94°C for 10 min; followed by 35 cycles of 94°C for 1 min, at temperatures between 55–61°C for 1 min, and 72°C for 1 min; and a final extension step of 72°C for 7 min.

To encompass the most genetic diversity of A. aurantiaca in the Los Tuxtlas rainforest, we collected leaf tissue of 107 individuals from four populations (Appendix 1). Genomic DNA was extracted following the cetyltrimethylammonium bromide (CTAB) MiniPrep protocol (Doyle and Doyle, 1987). We selected a subset of loci to function well together in four multiplex reactions (QIAGEN Multiplex PCR Kit) with labeled primers (Applied Biosystems, Foster City, California, USA) (Table 1). Each multiplex PCR mixture (10 μL) contained 2 μL of DNA template (20 ng), 0.2 μL of each fluorochrome-labeled forward primer (0.2 μM), 0.2 μL of each reverse primer (0.2 μM), 5 μL of QIAGEN Reaction Mix (1×), and 2.6 μL of RNase/DNase-free water (the volume of water varied depending on the number of primers in each multiplex reaction) (QIAGEN). Multiplexed reactions were carried out on a Hybaid Px2 thermal cycler (Thermo Scientific) and a Veriti 96-Well Thermal Cycler (Applied Biosystems). PCRs were performed through touchdown reactions, start-

Table 1. Characteristics of 14 microsatellite loci developed in *Aphelandra aurantiaca*.

<table>
<thead>
<tr>
<th>Locus</th>
<th>Primer sequences (5'–3')</th>
<th>Allele size range (bp)</th>
<th>Fluorescent label</th>
<th>Repeat motif</th>
<th>GenBank accession no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0432<sup>a</sup></td>
<td>F: AGGCTGAGAGATTCAAGGG R: AAGACAGGCTGATGACGTGG</td>
<td>113–124</td>
<td>NED</td>
<td>(AGCC)<sub>24</sub></td>
<td>SRR1816885</td>
</tr>
<tr>
<td>1233<sup>a</sup></td>
<td>F: GTTGCAATGGCGAAGCTAGGG R: TGTTAGGATGACTGTCCTGCC</td>
<td>116–126</td>
<td>PET</td>
<td>(AT)<sub>32</sub></td>
<td>SRR1514097</td>
</tr>
<tr>
<td>4343<sup>a</sup></td>
<td>F: TGTTAAGGAGATTGGAAGAAATAGG R: TGATGGCTGGGACATCTGCC</td>
<td>150–172</td>
<td>6-FAM</td>
<td>(ATT)<sub>27</sub></td>
<td>SRR1817142</td>
</tr>
<tr>
<td>4914<sup>a</sup></td>
<td>F: AGGATTGGCTGCGTGCTCTC R: CCGCTGGATTCTCGCTTC</td>
<td>130–152</td>
<td>VIC</td>
<td>(AT)<sub>22</sub></td>
<td>SRR1817143</td>
</tr>
<tr>
<td>5490<sup>a</sup></td>
<td>F: GGTTGATGACGTCCACAGCG R: TGAGAAGCTGTCGTCTGACG</td>
<td>174–184</td>
<td>NED</td>
<td>(ATGC)<sub>24</sub></td>
<td>SRR1816884</td>
</tr>
<tr>
<td>1810<sup>a</sup></td>
<td>F: TGCCCTATTAGCAGCACCTC R: GAACCGCTTGGCCGCTTCC</td>
<td>194–207</td>
<td>PET</td>
<td>(AC)<sub>26</sub></td>
<td>SRR1817168</td>
</tr>
<tr>
<td>4378<sup>**</sup></td>
<td>F: GAGAATATAGCGCAGCCGGGG R: TCGGCTACATGCTCCAAGG</td>
<td>216</td>
<td>VIC</td>
<td>(TTC)<sub>18</sub></td>
<td>SRR1817171</td>
</tr>
<tr>
<td>1721<sup>**</sup></td>
<td>F: TCCCTCTTCTCTATACAGTTGG R: TGTCGTTTATGTGCAACGCC</td>
<td>180</td>
<td>PET</td>
<td>(TC)<sub>30</sub></td>
<td>SRR1817170</td>
</tr>
<tr>
<td>4483<sup>a</sup></td>
<td>F: GATGGAGGCGAGTAGATGAGC R: GCAGAATCTTGGACAGACCC</td>
<td>206–229</td>
<td>NED</td>
<td>(TC)<sub>30</sub></td>
<td>SRR1817184</td>
</tr>
<tr>
<td>5250<sup>b</sup></td>
<td>F: TTTTCTTCTTCTTCTTCTTGG R: GGACAAGAGATCGATGAGCA</td>
<td>208–293</td>
<td>6-FAM</td>
<td>(TC)<sub>28</sub></td>
<td>SRR1817169</td>
</tr>
<tr>
<td>1071<sup>a</sup></td>
<td>F: TTGTATTGTAATGACCTCTTGG R: CGAATTAGTGGCTAAGGGCC</td>
<td>272–304</td>
<td>PET</td>
<td>(AT)<sub>36</sub></td>
<td>SRR1817193</td>
</tr>
<tr>
<td>1808<sup>a</sup></td>
<td>F: AATGCTCAAGGCATGCACC R: TAACGTGGTAACGATGCTCC</td>
<td>294–318</td>
<td>NED</td>
<td>(AGT)<sub>30</sub></td>
<td>SRR1817198</td>
</tr>
<tr>
<td>4536<sup>a</sup></td>
<td>F: AAGAATAGATATGCTTGGAGGCC R: GGAATTTATATGAAATGCGCC</td>
<td>187–193</td>
<td>6-FAM</td>
<td>(TG)<sub>21</sub></td>
<td>SRR1817191</td>
</tr>
<tr>
<td>5441<sup>a</sup></td>
<td>F: CAAGAGCCTCTTATATGATTAGGAGGCC R: AACTTTAAGGCACCAGTGCCG</td>
<td>200–300</td>
<td>NED</td>
<td>(TC)<sub>30</sub></td>
<td>SRR1817260</td>
</tr>
</tbody>
</table>

^{Note:} Annealing temperature was the same for all primers (T_a = 57°C). For genotyping, we used: (a) one quintuplex reaction (loci 0432, 1233, 4343, 4914, and 5490), (b) one duplex reaction (loci 1810 and 4378), (c) one triplex reaction (loci 1721, 4483, and 5250), and (d) one quadruplex reaction (loci 1071, 1808, 4536, and 5441).

^a Monomorphic locus.
preserved and fragmented rainforest. Likewise, we expect these microsatellite loci could be useful for other Aphelandra species.

LITERATURE CITED

APPENDIX 1. Geographic location and voucher information of populations of Aphelandra aurantiaca from Los Tuxtlas tropical rainforest. A voucher was collected only at the largest forest fragment (ca. 700 ha).

http://www.bioone.org/loi/apps

Suárez-Montes et al.—Aphelandra aurantiaca microsatellites