Translator Disclaimer
4 June 2008 Mapping mountain vegetation using species distribution modeling, image-based texture analysis, and object-based classification
Author Affiliations +

Objective: The objective of this study was to map vegetation composition across a 24000 ha watershed.

Location: The study was conducted on the western slope of the Sierra Nevada mountain range of California, USA.

Methods: Automated image segmentation was used to delineate image objects representing vegetation patches of similar physiognomy and structure. Image objects were classified using a decision tree and data sources extracted from individual species distribution models, Landsat spectral data, and life form cover estimates derived from aerial image-based texture variables.

Results: A total of 12 plant communities were mapped with an overall accuracy of 75% and a ϰ-value of 0.69. Species distribution model inputs improved map accuracy by approximately 15% over maps derived solely from image data. Automated mapping of existing vegetation distributions, based solely on predictive distribution model results, proved to be more accurate than mapping based on Landsat data, and equivalent in accuracy to mapping based on all image data sources.

Conclusions: Results highlight the importance of terrain, edaphic, and bioclimatic variables when mapping vegetation communities in complex terrain. Mapping errors stemmed from the lack of spectral discernability between vegetation classes, and the inability to account for the confounding effects of land use history and disturbance within a static distribution modeling framework.

Nomenclature: Hickman (ed.) 1993.

Solomon Z. Dobrowski, Hugh D. Safford, Yen Ben Cheng, and Susan L. Ustin "Mapping mountain vegetation using species distribution modeling, image-based texture analysis, and object-based classification," Applied Vegetation Science 11(4), 499-508, (4 June 2008).
Received: 11 September 2007; Accepted: 1 April 2008; Published: 4 June 2008

This article is only available to subscribers.
It is not available for individual sale.

Get copyright permission
Back to Top