Translator Disclaimer
1 December 2009 The Kinetochore Moves Ahead: Contributions of Molecular and Genetic Techniques to Our Understanding of Mitosis
Author Affiliations +
Abstract
Cell division is necessary to the building of a soma from the single-celled zygote during development, as well as the sine qua non, in the form of meiosis, for the evolutionary success of species. Here we review recent progress in our understanding of a key player, the kinetochore, in these processes. The kinetochore is both the anchor to the mitotic spindle for chromosomes at division and the motor for distribution of chromosomal units to daughter cells. In addition, the kinetochore plays a key role in the molecular checkpoints of cell-cycle progression. Although the nucleation of the kinetochore at a chromosomal site is under epigenetic control, the underlying base sequence of the DNA at the centromere is not critical: The assembly of the kinetochore occurs at exactly the same place on the same chromosomes at every division cycle. We discuss recent advances in our understanding of how the kinetochore is organized and assembled, as well as how it contributes to critical cell-cycle checkpoints and to chromosome movement.
© 2009 by American Institute of Biological Sciences. All rights reserved. Request permission to photocopy or reproduce article content at the University of California Press's Rights and Permissions Web site at www.ucpressjournals.com/reprintinfo.asp.
Mary Kathrine Johnson and Dwayne A. Wise "The Kinetochore Moves Ahead: Contributions of Molecular and Genetic Techniques to Our Understanding of Mitosis," BioScience 59(11), (1 December 2009). https://doi.org/10.1525/bio.2009.59.11.5
JOURNAL ARTICLE
11 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
ARTICLE IMPACT
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top