Translator Disclaimer
1 September 2001 Mares with Delayed Uterine Clearance Have an Intrinsic Defect in Myometrial Function
Author Affiliations +
Abstract

Persistent, postmating endometritis affects approximately 15% of mares and results in reduced fertility and sizable economic losses to the horse-breeding industry. Mares that are susceptible to postmating endometritis have delayed uterine clearance associated with reduced uterine contractility. Unfortunately, the mechanism for reduced uterine contractility remains an enigma. The present study examined the hypothesis that mares with delayed uterine clearance have an intrinsic contractile defect of the myometrium. Myometrial contractility was evaluated in vitro by measuring isometric tension generated by longitudinal and circular uterine muscle strips in response to KCl, oxytocin, and prostaglandin F (PGF) for young nulliparous mares, older reproductively normal mares, and older mares with delayed uterine clearance. In addition, intracellular Ca2 regulation was evaluated using laser cytometry to measure oxytocin-stimulated intracellular Ca2 transients of myometrial cells loaded with a Ca2 -sensitive fluorescent dye, fluo-4. For all contractile agonists, myometrium from mares with delayed uterine clearance failed to generate as much tension as myometrium from older normal mares. Oxytocin-stimulated intracellular Ca2 transients were similar for myometrial cells from mares with delayed uterine clearance and from older normal mares, suggesting that the contractile defect did not result from altered regulation of intracellular Ca2 concentration. Furthermore, no apparent age-dependent decline was observed in myometrial contractility; KCl-depolarized and oxytocin-stimulated longitudinal myometrium from young normal mares and older normal mares generated similar responses. However, circular myometrium from young normal mares failed to generate as much tension as myometrium from older normal mares when stimulated with oxytocin or PGF, suggesting possible age-related alterations in receptor-second messenger signaling mechanisms downstream of intracellular Ca2 release. In summary, for mares with delayed uterine clearance, an intrinsic contractile defect of the myometrium may contribute to reduced uterine contractility following breeding.

Sherri L. Rigby, Rola Barhoumi, Robert C. Burghardt, Patrick Colleran, James A. Thompson, Dickson D. Varner, Terry L. Blanchard, Steven P. Brinsko, Tex Taylor, M. Keith Wilkerson, and Michael D. Delp "Mares with Delayed Uterine Clearance Have an Intrinsic Defect in Myometrial Function," Biology of Reproduction 65(3), 740-747, (1 September 2001). https://doi.org/10.1095/biolreprod65.3.740
Received: 28 November 2000; Accepted: 1 April 2001; Published: 1 September 2001
JOURNAL ARTICLE
8 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
ARTICLE IMPACT
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top