Translator Disclaimer
1 April 2004 The Novel Dominant Mutation Dspd Leads to a Severe Spermiogenesis Defect in Mice
Author Affiliations +

Spermiogenesis is a complex process that is regulated by a plethora of genes and interactions between germ and somatic cells. Here we report a novel mutant mouse strain that carries a transgene insertional/translocational mutation and exhibits dominant male sterility. We named the mutation dominant spermiogenesis defect (Dspd). In the testes of Dspd mutant mice, spermatids detached from the seminiferous epithelium at different steps of the differentiation process before the completion of spermiogenesis. Microinsemination using spermatids collected from the mutant testes resulted in the birth of normal offspring. These observations indicate that the major cause of Dspd infertility is (are) a defect(s) in the Sertoli cell-spermatid interaction or communication in the seminiferous tubules. Fluorescent in situ hybridization (FISH) analysis revealed a translocation between chromosomes 7F and 14C at the transgene insertion site. The deletion of a genomic region of chromosome 7F greater than 1 megabase and containing at least six genes (Cttn, Fadd, Fgf3, Fgf4, Fgf15, and Ccnd1) was associated with the translocation. Cttn encodes the actin-binding protein cortactin. Immunohistochemical analysis revealed localization of cortactin beside elongated spermatids in wild-type testes; abnormality of cortactin localization was found in mutant testes. These data suggest an important role of cortactin in Sertoli cell-spermatid interactions and in the Dspd phenotype.

Masayuki Kai, Masahito Irie, Tomohisa Okutsu, Kimiko Inoue, Narumi Ogonuki, Hiromi Miki, Minesuke Yokoyama, Rika Migishima, Kaori Muguruma, Hisako Fujimura, Takashi Kohda, Atsuo Ogura, Tomoko Kaneko-Ishino, and Fumitoshi Ishino "The Novel Dominant Mutation Dspd Leads to a Severe Spermiogenesis Defect in Mice," Biology of Reproduction 70(4), 1213-1221, (1 April 2004).
Received: 30 October 2003; Accepted: 1 December 2003; Published: 1 April 2004

This article is only available to subscribers.
It is not available for individual sale.

Get copyright permission
Back to Top