How to translate text using browser tools
1 June 2007 Anterior Pituitary Gene Expression with Reproductive Aging in the Female Rat
Weiming Zheng, Mercedes Jimenez-Linan, Beverly S. Rubin, Lisa M. Halvorson
Author Affiliations +
Abstract

Although reproductive aging in women is classically attributed to loss of ovarian follicles, recent data have suggested that the entire hypothalamic-pituitary-ovarian axis undergoes functional changes with time. The aim of this study was to characterize age-related changes in pituitary gene expression for factors with known importance for gonadotroph function, including 1) steroid hormone receptors (Esr and Pgr), 2) orphan nuclear receptors [Nr5a1 (steroidogenic factor-1) and Nr5a2 (liver receptor homologue-1)], and 3) pituitary-derived polypeptides (activin, inhibin, and follistatin), as well as 4) gonadotropin subunits and 5) GnRH receptors. We chose to utilize a middle-aged rat model for these studies. Young (Y; 3-mo-old) and middle-aged (MA; 9- to 12-mo-old) rats were ovariectomized, primed with estradiol, and injected with progesterone to induce an LH surge. The mRNA levels for the gonadotropin subunits and GnRH receptors were decreased in middle-aged females relative to young animals. Nr5a1 and follistatin mRNA levels were significantly greater in Y versus MA animals following ovariectomy. Furthermore, steroid-induced regulation of these genes was lost in the MA animals. Regulation of the Nr5a2, Inhba, and Inhbb transcripts was also limited to the young animals. In contrast, there were no significant differences in the mRNA levels of Esr or Pgr family members between age groups at any time point. Although this in vivo model normalizes ovarian steroid levels, it does not control for potential differences in GnRH stimulation with aging. Therefore, in a second set of experiments, we used an in vitro perifusion system to compare the effects of pulsatile GnRH in the two age groups. Nr5a1 mRNA expression was greater in Y than MA animals and was significantly decreased by GnRH pulses in both age groups. Follistatin mRNA levels increased significantly with GnRH treatment in Y animals but were not significantly changed in the MA females. Taken together, these data demonstrate gene-specific blunting of pituitary gene expression postovariectomy and during the steroid-induced surge in middle-aged rats. We propose that age-related changes in pituitary physiology may contribute to reproductive senescence.

Weiming Zheng, Mercedes Jimenez-Linan, Beverly S. Rubin, and Lisa M. Halvorson "Anterior Pituitary Gene Expression with Reproductive Aging in the Female Rat," Biology of Reproduction 76(6), 1091-1102, (1 June 2007). https://doi.org/10.1095/biolreprod.106.057877
Received: 3 October 2006; Accepted: 1 March 2007; Published: 1 June 2007
KEYWORDS
aging
follistatin
gene regulation
pituitary
steroid hormone receptors
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top