Translator Disclaimer
18 September 2013 DNA Topoisomerase II Is Dispensable for Oocyte Meiotic Resumption but Is Essential for Meiotic Chromosome Condensation and Separation in Mice
Author Affiliations +
Abstract

During mitosis, DNA topoisomerase II (TOP2) is required for sister chromatid separation. When TOP2 activity is inhibited, a decatenation checkpoint is activated by entangled chromatin. However, the functions of TOP2 in oocyte meiosis, particularly for homologous chromosome segregation during meiosis I, have not been investigated. In addition, it remains unknown if TOP2 inhibition activates a decatenation checkpoint at the G2/M transition in oocytes. In this study, we used mouse oocytes and specific inhibitors of TOP2 (ICRF-193 and etoposide) to investigate the role of TOP2 in meiosis. Our results indicated that an effective decatenation checkpoint did not exist in fully grown oocytes, as oocytes underwent the G2/M transition and reinitiated meiosis even when TOP2 activity was inhibited. However, oocytes treated with ICRF-193 had severe defects in chromosome condensation and homologous chromosome separation. Furthermore, condensed chromosomes failed to maintain their normal configurations in matured oocytes that were treated with ICRF-193. However, sister chromatid separation and subsequent chromosome decondensation during the exit from meiosis were not blocked by TOP2 inhibitors. These results indicated that TOP2 had a specific, crucial function in meiosis I. Thus, we identified important functions of TOP2 during oocyte maturation and provided novel insights into the decatenation checkpoint during meiosis.

Xiao-Meng Li, Chao Yu, Zhong-Wei Wang, Yin-Li Zhang, Xiao-Man Liu, Dawang Zhou, Qing-Yuan Sun, and Heng-Yu Fan "DNA Topoisomerase II Is Dispensable for Oocyte Meiotic Resumption but Is Essential for Meiotic Chromosome Condensation and Separation in Mice," Biology of Reproduction 89(5), (18 September 2013). https://doi.org/10.1095/biolreprod.113.110692
Received: 13 May 2013; Accepted: 1 September 2013; Published: 18 September 2013
JOURNAL ARTICLE
PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
ARTICLE IMPACT
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top