How to translate text using browser tools
24 July 2014 Functional Role of Arginine During the Peri-implantation Period of Pregnancy. II. Consequences of Loss of Function of Nitric Oxide Synthase NOS3 mRNA in Ovine Conceptus Trophectoderm
Xiaoqiu Wang, James W. Frank, Jing Xu, Kathrin A. Dunlap, M. Carey Satterfield, Robert C. Burghardt, Jared J. Romero, Thomas R. Hansen, Guoyao Wu, Fuller W. Bazer
Author Affiliations +
Abstract

Nitric oxide (NO) is a gaseous molecule that regulates angiogenesis and vasodilation via activation of the cGMP pathway. However, functional roles of NO during embryonic development from spherical blastocysts to elongated filamentous conceptuses (embryo and extraembryonic membrane) during the peri-implantation period of pregnancy have not been elucidated in vivo. In order to assess roles of NO production in survival and development of the ovine conceptus, we conducted an in vivo morpholino antisense oligonucleotide (MAO)-mediated knockdown trial of nitric oxide synthase-3 (NOS3) mRNA, the major isoform of NO synthase, in ovine conceptus trophectoderm (Tr). Translational knockdown of NOS3 mRNA results in small, thin, and underdeveloped conceptuses, but normal production of interferon-tau, the pregnancy recognition signal in sheep. MAO-NOS3 knockdown in conceptuses decreased the abundance of NOS3 (72%, P < 0.05) and the arginine transporter SLC7A1 proteins in conceptus Tr. Furthermore, the amounts of ornithine and polyamines were less (P < 0.01) in uterine fluid, whereas the amounts of arginine (58%, P < 0.01), citrulline (68%, P < 0.05), ornithine (68%, P < 0.001), glutamine (78%, P < 0.001), glutamate (68%, P < 0.05), and polyamines (P < 0.01) were less in conceptuses, which likely accounts for the failure of MAO-NOS3 conceptuses to develop normally. For MAO-NOS3 conceptuses, there were no compensatory increases in the expression levels of either nitric oxide synthase-1 (NOS1) or nitric oxide synthase-2 (NOS2) or in expression of enzymes for synthesis of polyamines (ornithine decarboxylase, arginine decarboxylase, agmatinase) from arginine or ornithine with which to rescue development of MAO-NOS3 conceptuses. Thus, the adverse effect of MAO-NOS3 to reduce NO generation and the transport of arginine and ornithine into conceptuses is central to an explanation for failure of normal development of MAO-NOS3, compared to control conceptuses. The study, for the first time, created an NO-deficient mammalian conceptus model in vivo and provided new insights into the orchestrated events of conceptus development during the peri-implantation period of pregnancy. Our data suggest that NOS3 is the key enzyme for NO production by conceptus Tr and that this protein also regulates the availability of arginine in conceptus tissues for synthesis of polyamines that are essential for conceptus survival and development.

Xiaoqiu Wang, James W. Frank, Jing Xu, Kathrin A. Dunlap, M. Carey Satterfield, Robert C. Burghardt, Jared J. Romero, Thomas R. Hansen, Guoyao Wu, and Fuller W. Bazer "Functional Role of Arginine During the Peri-implantation Period of Pregnancy. II. Consequences of Loss of Function of Nitric Oxide Synthase NOS3 mRNA in Ovine Conceptus Trophectoderm," Biology of Reproduction 91(3), (24 July 2014). https://doi.org/10.1095/biolreprod.114.121202
Received: 7 May 2014; Accepted: 1 July 2014; Published: 24 July 2014
KEYWORDS
development
morpholino
Nitric oxide
nitric oxide synthase
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top