How to translate text using browser tools
7 December 2016 Prospects to utilise intercrops and crop variety mixtures in mechanised, rain-fed, temperate cropping systems
Andrew L. Fletcher, John A. Kirkegaard, Mark B. Peoples, Michael J. Robertson, Jeremy Whish, Antony D. Swan
Author Affiliations +
Abstract

Despite the potential productivity benefits, intercrops are not widely used in modern, mechanised grain cropping systems such as those practised in Australia, due to the additional labour required and the added complexity of management (e.g. harvesting and handling of mixed grain). In this review we investigate this dilemma using a two-dimensional matrix to categorise and evaluate intercropping systems. The first dimension describes the acquisition and use of resources in complementary or facilitative interactions that can improve resource use efficiency. The outcome of this resource use is often quantified using the land equivalent ratio (LER). This is a measure of the relative land area required as monocultures to produce the same yields as achieved by an intercrop. Thus, an LER greater than 1 indicates a benefit of the intercrop mixture. The second dimension describes the benefits to a farming system arising not only from the productivity benefits relating to increased LER, but from other often unaccounted benefits related to improved product quality, rotational benefits within the cropping system, or to reduced business risks. We contend that a successful intercrop must have elements in both dimensions. To date most intercropping research has considered only one of these two possible dimensions.

Intercrops in large, mechanised, rain-fed farming systems can comprise those of annual legumes with non-legume crops to improve N nutrition, or other species combinations that improve water use through hydraulic redistribution (the process whereby a deep-rooted plant extracts water from deep in the soil profile and releases a small proportion of this into the upper layers of the soil at night), or alter disease, pest or weed interactions. Combinations of varieties within cereal varieties were also considered. For our focus region in the southern Australian wheatbelt, we found few investigations that adequately dealt with the systems implications of intercrops on weeds, diseases and risk mitigation. The three main intercrop groups to date were (1) ‘peaola’ (canola-field pea intercrops) where 70% of intercrops (n = 34) had a 50% productivity increase over the monocultures, (2) cereal-grain legume intercrops (n = 22) where 64% showed increases in crop productivity compared with monocultures and (3) mixtures of cereal varieties (n = 113) where there was no evidence of a productivity increase compared with the single varieties.

Our review suggests that intercropping may have a role in large rain-fed grain cropping systems, based on the biophysical benefits revealed in the studies to date. However, future research to develop viable intercrop options should identify and quantify the genotypic differences within crop species for adaptation to intercropping, the long-term rotational benefits associated with intercrops, and the yield variability and complexity-productivity trade-offs in order to provide more confidence for grower adoption. Farming systems models will be central to many of these investigations but are likely to require significant improvement to capture important processes in intercrops (e.g. competition for water, nutrients and light).

© CSIRO 2016
Andrew L. Fletcher, John A. Kirkegaard, Mark B. Peoples, Michael J. Robertson, Jeremy Whish, and Antony D. Swan "Prospects to utilise intercrops and crop variety mixtures in mechanised, rain-fed, temperate cropping systems," Crop and Pasture Science 67(12), 1252-1267, (7 December 2016). https://doi.org/10.1071/CP16211
Received: 10 June 2016; Accepted: 1 October 2016; Published: 7 December 2016
KEYWORDS
farming systems
intercrop
mixtures
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top