Translator Disclaimer
1 December 2009 Colonization of Ephemeral Water Bodies in the Wheatbelt of Western Australia by Assemblages of Mosquitoes (Diptera: Culicidae): Role of Environmental Factors, Habitat, and Disturbance
Author Affiliations +
Abstract

Environmental disturbance may have direct and indirect impacts on organisms. We studied the colonization of ephemeral water bodies by mosquitoes (Diptera: Culicidae) in the Wheatbelt region of southwest Western Australia, an area substantially affected by an expanding anthropogenic salinization. Mosquitoes frequently colonized ephemeral water bodies, responded positively to rainfall, and populated smaller water bodies more densely than larger water bodies. We found that the habitat characteristics of ephemeral water bodies changed in association with salinity. Consequently relationships between salinity and abundance of colonizing mosquitoes were direct (salinity—mosquito) and indirect (salinity—water body characteristics—mosquito). Overall, the structure of mosquito assemblages changed with increasing salinity, favoring an increased regional distribution and abundance of Aedes camptorhynchus Thomson (Diptera: Culicidae), a vector of Ross river virus (RRV; Togoviridae: Alphavirus). We conclude secondary salinization in the Western Australia Wheatbelt results in enhanced vectorial potential for RRV transmission.

© 2009 Entomological Society of America
Scott Carver, Helen Spafford, Andrew Storey, and Philip Weinstein "Colonization of Ephemeral Water Bodies in the Wheatbelt of Western Australia by Assemblages of Mosquitoes (Diptera: Culicidae): Role of Environmental Factors, Habitat, and Disturbance," Environmental Entomology 38(6), 1585-1594, (1 December 2009). https://doi.org/10.1603/022.038.0609
Received: 28 January 2009; Accepted: 1 June 2009; Published: 1 December 2009
JOURNAL ARTICLE
10 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
ARTICLE IMPACT
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top