Translator Disclaimer
1 December 2014 Can Alternative Sugar Sources Buffer Pollinators From Nectar Shortages?
Author Affiliations +
Abstract
Honeydew is abundant in many ecosystems and may provide an alternative food source (a buffer) for pollinators during periods of food shortage, but the impact of honeydew on pollination systems has received little attention to date. In New Zealand, kānuka trees (Myrtaceae: Kunzea ericoides (A. Rich) Joy Thompson) are often heavily infested by the endemic honeydew-producing scale insect Coelostomidia wairoensis (Maskell) (Hemiptera: Coelostomidiidae) and the period of high honeydew production can overlap with kānuka flowering. In this study, we quantified the sugar resources (honeydew and nectar) available on kānuka and recorded nocturnal insect activity on infested and uninfested kānuka during the flowering period. Insects were abundant on infested trees, but flowers on infested trees received fewer insect visitors than flowers on uninfested trees. There was little evidence that insects had switched directly from nectar-feeding to honeydew-feeding, but it is possible that some omnivores (e.g., cockroaches) were distracted by the other honeydew-associated resources on infested branches (e.g., sooty molds, prey). Additional sampling was carried out after kānuka flowering had finished to determine honeydew usage in the absence of adjacent nectar resources. Moths, which had fed almost exclusively on nectar earlier, were recorded feeding extensively on honeydew after flowering had ceased; hence, honeydew may provide an additional food source for potential pollinators. Our results show that honeydew resources can impact floral visitation patterns and suggest that future pollinator studies should consider the full range of sugar resources present in the study environment.
© 2014 Entomological Society of America
Robin Gardner-Gee, Manpreet K. Dhami, Katherine J. Paulin and Jacqueline R. Beggs "Can Alternative Sugar Sources Buffer Pollinators From Nectar Shortages?," Environmental Entomology 43(6), (1 December 2014). https://doi.org/10.1603/EN13292
Received: 18 October 2013; Accepted: 1 September 2014; Published: 1 December 2014
JOURNAL ARTICLE
12 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
ARTICLE IMPACT
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top