Translator Disclaimer
1 September 2004 POPULATION DIFFERENTIATION IN G MATRIX STRUCTURE DUE TO NATURAL SELECTION IN RANA TEMPORARIA
Author Affiliations +
Abstract

The additive genetic variance-covariance matrix (G) is a concept central to discussions about evolutionary change over time in a suite of traits. However, at the moment we do not know how fast G itself changes as a consequence of selection or how sensitive it is to environmental influences. We investigated possible evolutionary divergence and environmental influences on G using data from a factorial common-garden experiment where common frog (Rana temporaria) tadpoles from two divergent populations were exposed to three different environmental treatments. G-matrices were estimated using an animal model approach applied to data from a NCII breeding design. Matrix comparisons using both Flury and multivariate analysis of variance methods revealed significant differences in G matrices both between populations and between treatments within populations, the former being generally larger than the latter. Comparison of levels of population differentiation in trait means using QST indices with that observed in microsatellite markers (FST) revealed that the former values generally exceeded the neutral expectation set by FST. Hence, the results suggest that intraspecific divergence in G matrix structure has occurred mainly due to natural selection.

José Manuel Cano, Anssi Laurila, Jukka Palo, and Juha Merilä "POPULATION DIFFERENTIATION IN G MATRIX STRUCTURE DUE TO NATURAL SELECTION IN RANA TEMPORARIA," Evolution 58(9), 2013-2020, (1 September 2004). https://doi.org/10.1554/04-192
Received: 23 March 2004; Accepted: 27 May 2004; Published: 1 September 2004
JOURNAL ARTICLE
8 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
ARTICLE IMPACT
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top