Translator Disclaimer
1 November 2006 EVOLUTION OF POECILOGONY FROM PLANKTOTROPHY: CRYPTIC SPECIATION, PHYLOGEOGRAPHY, AND LARVAL DEVELOPMENT IN THE GASTROPOD GENUS ALDERIA
Author Affiliations +
Abstract

Poecilogony, a rare phenomenon in marine invertebrates, occurs when alternative larval morphs differing in dispersal potential or trophic mode are produced from a single genome. Because both poecilogony and cryptic species are prevalent among sea slugs in the suborder Sacoglossa (Gastropoda: Opisthobranchia), molecular data are needed to confirm cases of variable development and to place them in a phylogenetic context. The nominal species Alderia modesta produces long-lived, feeding larvae throughout the North Atlantic and Pacific, but in California can also produce short-lived larvae that metamorphose without feeding. We collected morphological, developmental, and molecular data for Alderia from 17 sites spanning the eastern and western Pacific and North Atlantic. Estuaries south of Bodega Harbor, California, contained a cryptic species (hereafter Alderia sp.) with variable development, sister to the strictly planktotrophic A. modesta. The smaller Alderia sp. seasonally toggled between planktotrophy and lecithotrophy, with some individuals differing in development but sharing mitochondrial DNA haplotypes. The sibling species overlapped in Tomales Bay, California, but showed no evidence of hybridization; laboratory mating trials suggest postzygotic isolation has arisen. Intra- and interspecific divergence times were estimated using a molecular clock calibrated with geminate sacoglossans. Speciation occurred about 4.1 million years ago during a major marine radiation in the eastern Pacific, when large inland embayments in California may have isolated ancestral populations. Atlantic and Pacific A. modesta diverged about 1.7 million years ago, suggesting trans-Arctic gene flow was interrupted by Pleistocene glaciation. Both Alderia species showed evidence of late Pleistocene population expansion, but the southern Alderia sp. likely experienced a more pronounced bottleneck. Reduced body size may have incurred selection against obligate planktotrophy in Alderia sp. by limiting fecundity in the face of high larval mortality rates in warm months. Alternatively, poecilogony may be an adaptive response to seasonal opening of estuaries, facilitating dispersal by long-lived larvae. An improved understanding of the forces controlling seasonal shifts in development in Alderia sp. may yield insight into the evolutionary forces promoting transitions to nonfeeding larvae.

Ryan A. Ellingson and Patrick J. Krug "EVOLUTION OF POECILOGONY FROM PLANKTOTROPHY: CRYPTIC SPECIATION, PHYLOGEOGRAPHY, AND LARVAL DEVELOPMENT IN THE GASTROPOD GENUS ALDERIA," Evolution 60(11), 2293-2310, (1 November 2006). https://doi.org/10.1554/06-145.1
Received: 9 March 2006; Accepted: 20 July 2006; Published: 1 November 2006
JOURNAL ARTICLE
18 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
ARTICLE IMPACT
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top