Translator Disclaimer
1 December 2006 EXTREME SELECTION IN HUMANS AGAINST HOMEOTIC TRANSFORMATIONS OF CERVICAL VERTEBRAE
Author Affiliations +
Abstract

Why do all mammals, except for sloths and manatees, have exactly seven cervical vertebrae? In other vertebrates and other regions, the vertebral number varies considerably. We investigated whether natural selection constrains the number of cervical vertebrae in humans. To this end, we determined the incidence of cervical ribs and other homeotic vertebral changes in radiographs of deceased human fetuses and infants, and analyzed several existing datasets on the incidence in infants and adults. Our data show that homeotic transformations that change the number of cervical vertebrae are extremely common in humans, but are strongly selected against: almost all individuals die before reproduction. Selection is most probably indirect, caused by a strong coupling of such changes with major congenital abnormalities. Changes in the number of thoracic vertebrae appear to be subject to weaker selection, in good correspondence with the weaker evolutionary constraint on these numbers. Our analysis highlights the role of prenatal selection in the conservation of our common body plan.

Frietson Galis, Tom J. M. Van Dooren, Johan D. Feuth, Johan A. J. Metz, Andrea Witkam, Sebastiaan Ruinard, Marc J. Steigenga, and Liliane C. D. Wijnaendts "EXTREME SELECTION IN HUMANS AGAINST HOMEOTIC TRANSFORMATIONS OF CERVICAL VERTEBRAE," Evolution 60(12), (1 December 2006). https://doi.org/10.1554/06-064.1
Received: 2 February 2006; Accepted: 9 September 2006; Published: 1 December 2006
JOURNAL ARTICLE
12 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
ARTICLE IMPACT
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top