How to translate text using browser tools
1 November 2007 INDEPENDENT EVOLUTION OF COMPLEX LIFE HISTORY ADAPTATIONS IN TWO FAMILIES OF FISHES, LIVE-BEARING HALFBEAKS (ZENARCHOPTERIDAE, BELONIFORMES) AND POECILIIDAE (CYPRINODONTIFORMES)
David Reznick, Robert Meredith, Bruce B. Collette
Author Affiliations +
Abstract

We have previously documented multiple, independent origins of placentas in the fish family Poeciliidae. Here we summarize similar analyses of fishes in the family Zenarchopteridae. This family includes three live-bearing genera. Earlier studies documented the presence of superfetation, or the ability to carry multiple litters of young in different stages of development in the same ovary, in some species in all three genera. There is also one earlier report of matrotrophy, or extensive postfertilization maternal provisioning, in two of these genera. We present detailed life-history data for approximately half of the species in all three genera and combine them with the best available phylogeny to make inferences about the pattern of life-history evolution within this family. Three species of Hemirhamphodon have superfetation but lack matrotrophy. Most species in Nomorhamphus and Dermogenys either lack superfetation and matrotrophy or have both superfetation and matrotrophy. Our phylogenetic analysis shows that matrotrophy may have evolved independently in each genus. In Dermogenys, matrotrophic species produce fewer, larger offspring than nonmatrotrophic species. In Nomorhamphus; matrotrophic species instead produce more and smaller offspring than lecithotrophic species. However, the matrotrophic species in both genera have significantly smaller masses of reproductive tissue relative to their body sizes. All aspects of these results are duplicated in the fish family Poeciliidae. We discuss the possible adaptive significance of matrotrophy in the light of these new results. The two families together present a remarkable opportunity to study the evolution of a complex trait because they contain multiple, independent origins of the trait that often include close relatives that vary in either the presence or absence of the matrotrophy or in the degree to which matrotrophy is developed. These are the raw materials that are required for either an analysis of the adaptive significance of the trait or for studies of the genetic mechanisms that underlie the evolution of the trait.

David Reznick, Robert Meredith, and Bruce B. Collette "INDEPENDENT EVOLUTION OF COMPLEX LIFE HISTORY ADAPTATIONS IN TWO FAMILIES OF FISHES, LIVE-BEARING HALFBEAKS (ZENARCHOPTERIDAE, BELONIFORMES) AND POECILIIDAE (CYPRINODONTIFORMES)," Evolution 61(11), 2570-2583, (1 November 2007). https://doi.org/10.1111/j.1558-5646.2007.00207.x
Received: 12 March 2007; Accepted: 25 June 2007; Published: 1 November 2007
JOURNAL ARTICLE
14 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

KEYWORDS
convergence
convergent evolution
evolution of complex traits
matrotrophy
placenta
Poeciliidae
superfetation
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top