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Geomorphic morphometric differences between 
populations of Speyeria diana (Lepidoptera: 
Nymphalidae)
Carrie Wells1,*, Arryn Munn1, and Chelsea Woodworth2

Abstract

The wing shape of butterflies can be used as a character to measure individual butterfly and population-level differences in adult forms. We con-
ducted a geometric morphometric analysis of wing shape for Speyeria diana (Cramer & Stoll 1777) (Lepidoptera: Nymphalidae), a species currently 
threatened by extirpation across portions of its range. We photographed and digitized 243 pinned S. diana specimens from natural history museums 
in North America and Europe to compare wing shape and size across the historical and current distribution. We used principal components analysis 
(PCA) to compare variation in landmarks on forewings and hind wings. We used the principal component scores in a multiple analysis of variance 
(MANOVA) to test for differences, and interactions, between male and female specimens, eastern and western specimens, low and high elevation 
specimens, and specimens collected before and after 1950. We found significant differences between wing shape in male and female specimens, 
with male forewings being narrower and more elongated, possibly making them well suited for patrolling behavior. Female forewings were more 
rounded and wider, possibly reflecting their life history, because much of their life is spent on the forest floor in search of oviposition sites. We found 
significant regional differences in male forewing shape, reflecting the long-term geographic and genetic separation between these groups. We also 
found significant differences in female forewing shape between low and high elevation sites. Speyeria diana female forewings from high elevation 
populations were narrower than low elevation populations, indicating that these females may be more mobile than those from low elevations with 
wider forewings. There were no effects of yr since capture of specimens. The wing shape of western populations of S. diana appears to be adapted 
for low dispersal, supporting other recent findings that also indicate western populations of S. diana are both spatially and genetically isolated. We 
conclude that the future of S. diana will require the thoughtful preservation of well-connected high elevation habitats, especially in the western 
distribution where dispersal is more limited than in the east.

Key Words: butterfly; wing; conservation; Diana fritillary

Resumen

Se puede usar la forma del ala de las mariposas como una caracterista para medir las diferencias individuales de las mariposas y las diferencias 
al nivel del población en las formas adultas. Se realizó un análisis morfométrico geométrico de la forma del ala para Speyeria diana (Lepidoptera: 
Nymphalidae) (Cramer y Stoll 1777), una especie actualmente amenazada por la extirpación en partes de su rango geográfico. Tomamos fotografias 
y digitalizamos 243 especímenes de S. diana depositadas en museos de historia natural de América del Norte y de Europa para comparar la forma 
y el tamaño de las alas a través de su en la distribución histórica y actual. Utilizamos el análisis de componentes principales (ACP) para comparar la 
variación en sitios específicos de las alas anteriores y posteriores. Utilizamos los puntajes de los componentes principales en un análisis múltiple de 
varianza (ANOVA) para evaluar las diferencias e interacciones entre especímenes machos y hembras, especímenes orientales y occidentales, espe-
címenes de elevación baja y alta y especímenes recolectados antes y después de 1950. Encontramos diferencias significativas entre la forma del ala 
en especímenes masculinos y femeninos, con las alas anteriores masculinas siendo más estrechas y más alargadas, posiblemente haciéndolos muy 
adecuados para el comportamiento de patrullaje. Las alas anteriores femeninas fueron más redondeadas y más anchas, posiblemente reflejando 
su historia de vida, ya que gran parte de su vida transcurre en el suelo del bosque en busca de sitios de oviposición. Encontramos diferencias regio-
nales significativas en la forma masculina de las alas anteriores, lo que refleja la separación geográfica y genética a largo plazo entre estos grupos. 
También encontramos diferencias significativas en la forma de las alas delanteras femeninas entre sitios de baja y alta elevación. Las alas anteriores 
de poblaciones de Speyeria diana encontradas en sitios de alta elevación fueron más estrechas que las poblaciones de baja elevación, lo que indica 
que estas hembras pueden ser más móviles que las de elevaciones bajas con alas anteriores más anchas. No hubo efectos del año desde la captura 
de especímenes. La forma del ala de las poblaciones occidentales de S. diana parece estar adaptada para una baja dispersión, lo que respalda otros 
hallazgos recientes que también indican que las poblaciones occidentales de S. diana están espacialmente y genéticamente aisladas. Concluimos que 
el futuro de S. diana requerirá la preservación cuidadosa de hábitats de alta elevación bien conectados, especialmente en la distribución occidental 
donde la dispersión es más limitada que en el este.

Palabras Clave: mariposa; ala; conservación; fritilaria de Diana
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The North American Genus, Speyeria (Lepidoptera: Nymphalidae) 
(Cramer & Stoll 1777) is comprised of at least 16 species and over 100 
named subspecies (Dunford 2009; De Moya 2017). All species are uni-
voltine and exclusively use violets (Viola spp. [Violaceae]) as their larval 
host plants (Scott 1986). Speyeria diana is a large, sexually dimorphic 
member of this genus found in areas of the southeastern United States. 
This species is threatened by a number of factors across its range, such 
as habitat loss and fragmentation (Hammond & McCorkle 1983), pes-
ticide use (Peacock et al. 1998), fire suppression (Rudolph et al. 2006), 
and climate change (Wells & Tonkyn 2014), and is therefore of conser-
vation interest (Sims 2017). Speyeria diana has disappeared entirely 
from the Atlantic coastal plain, where it was first described by Cramer 
& Stoll (1777), and from interior lowland sites, including Indiana, Ohio, 
and Illinois. The species now persists in 2 disjunct parts of its former 
range, the Southern Appalachian Mountains in the east, and the Inte-
rior Highlands of Oklahoma and Arkansas in the west, and is shifting 
to higher elevations at about 18 m per decade (Wells & Tonkyn 2014). 
Using mitochondrial cytochrome oxidase II DNA sequences from mu-
seum and field sampled specimens, Wells et al. (2015) recently docu-
mented greater mtDNA diversity and more widespread genetic differ-
entiation among eastern populations than western ones. In addition, 
using coalescent-based population divergence models, Wells et al. 
(2015) dated the earliest splitting of eastern and western populations 
at least 20,000 yr ago, during the Last Glacial Maximum. For this study, 
we photographed pinned S. diana specimens held by North American 
and European natural history museums in order to measure geomor-
phic morphometric variation in wings across the historical and current 
distribution of the species.

Because butterfly wings largely reflect the behavior and ecological 
roles of the species, variation in their shape and size can provide insight 
about important population-level differences. For example, wing mor-
phology specifically provides information about the flight patterns and 
flight behaviors of butterflies, which can provide insight into popula-
tions’ habitat suitability and dispersal rates. A major aim of evolution-
ary biology is addressing how and why morphology and behavior of 
different organisms adapt to different environments (Cespedes et al. 
2015). Flight is an important character in the evolutionary success of 
insects, because it is essential for dispersal, courtship, and oviposition 

behaviors in many species. Wing shape affects flight performance in 
insects, and selection is expected to maximize performance of behav-
iors that result in the evolution of wing shape. Because wing shape 
contributes to the fitness of insects, optimal wing shapes for particular 
flight behaviors can be used to make predictions in an ecological con-
text (Cespedes et al. 2015).

Wing shape is directly related to the ecological roles and physi-
ological constraints of insect flight that differ between sexes (Willmott 
& Ellington 1997). As a result, geometric morphometric differences of-
ten are found between male and female butterflies due to their differ-
ent behaviors and life history strategies. For example, Speyeria diana 
males spend a significant portion of their time searching for mates by 
patrolling at high speeds up and down open roadways. Alternatively, 
females stay relatively well hidden, spending a majority of their time 
searching for suitable oviposition sites near violets on the forest floor. 
Behavioral sexual dimorphism, such as that displayed by S. diana, often 
is associated with differences in flight morphology, which is reflected 
in the shape of wings (Breuker et al. 2007). Speyeria diana females 
are slightly larger on average than males, with the average male fore-
wing of S. diana measuring 4.3 cm, and the average female forewing 
measuring 5.0 cm (Opler & Krizek 1984). Female wings are iridescent 
blue and white around the edges and black toward the center, while 
the smaller males have a bright orange and black coloration instead 
(Fig. 1).

Wing morphology is widely used across a variety of scientific dis-
ciplines to study insects, including taxonomic, ecological, behavioral, 
and evolutionary studies (De Moraes & Mescher 2004; Carreira et al. 
2006; Soto et al. 2008). Wings are an especially useful trait due to their 
significance in so many aspects of insect life (Betts & Wootton 1988; 
Wootton 1992; Berwaerts et al. 2002, 2006). Wing morphology, shape 
in particular, can be very informative as an indicator of changing, and 
often stressful, environmental conditions (Hoffmann et al. 2005). Geo-
metric morphometric methods in particular offer a comprehensive ap-
proach to the study of shape through the multivariate statistical analy-
sis of anatomical landmarks of biological homology (Bookstein 1991; 
Rohlf & Marcus 1993; Adams et al. 2004). These methods preserve 
the information about the relative spatial arrangement of the data 
throughout the analysis (Zelditch et al. 2004), making it possible to 

Fig. 1. Female (left) and male (right) Speyeria diana specimens were photographed for this study. All specimens were photographed with a cm ruler for proper 
scaling.
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find and analyze shape variations in the organisms within and between 
populations (Walker & Bell 2000). Moreover, geometric morphometric 
analyses have high statistical power and have easily visualized results, 
which help with their interpretation and communication across scien-
tific disciplines (Rohlf & Marcus 1993; Adams et al. 2004; Zelditch et 
al. 2004). The aim of our study was to use geometric morphometric 
methods to examine wing shape variation in male and female S. diana 
museum specimens collected from 1777 to 2007 across its historic and 
current distribution in order to better understand differential selection 
pressures across the distribution of this threatened species. Our results 
will advance the knowledge of adaptive morphology in fritillary but-
terflies and will help inform appropriate management of this species 
based on its dispersal ability and flight behavior across its range.

Materials and Methods

We photographed 267 pinned S. diana specimens that each had 
accurate label information documenting the date and exact location of 
collection from natural history museums in North America and Europe 
(Table 1). Our sample included 166 males and 101 females, dating back 
to the S. diana holotype, collected from Jamestown, Virginia, USA, by 
Cramer & Stoll (1777), and now housed in the British Museum of Natu-
ral History (BMNH) (Table 2). Populations of S. diana were extirpated 
from this locality in coastal Virginia by the 1950s.

In butterflies, the geometric morphometric landmarks most often 
used to measure shape are the wing vein intersections (Breuker et al. 
2007). We identified 11 vein intersections on Speyeria forewings, and 11 
on hind wings to use as landmarks for our study (Fig. 2). Forewings and 
hind wings were digitized and analyzed separately for all comparisons. 
Landmarks were digitized on the dorsal side of pinned specimen wings 
using tpsDig2 software v.2.12 (Rohlf 2009). We measured variation in 
wing shape using geometric morphometrics based on generalized least 
squares Procrustes superimposition methods. Procrustes analysis ex-
amines shape by superimposing configurations of landmarks in 2 or 
more specimens to achieve an overall best fit (Klingenberg & McIntyre 
1998). Procrustes transformation eliminates variation due to wing size 
and orientation of pinned specimens by scaling the specimens to a unit 
centroid size (Rohlf & Slice 1990). This allowed us to analyze variation 
solely due to differences in wing morphology (Fig. 3).

We conducted a principal components analysis using Morphologi-
ka2 v.2.5 (O’Higgins & Jones 2006) to summarize differences between 
the average shapes of wing landmarks. A principal components analy-
sis works by finding the first axis that passes through the centroid, ac-
counting for the most variation present in the data. A second axis is 
then formed by passing through the centroid orthogonally to the first 
principal components analysis, which accounts for the next greatest 
variation. Each rotation of the axis accounts for a principal component 
score, and each axis has an associated eigenvalue that describes the 
variation explained by the axis. The eigenvalues are then expressed 

as percentages of the total variation (Palmer 2000). We used the first 
3 principal component scores that explained the greatest variation in 
forewing and hind wing shape as characters for analysis in a multiple 
analysis of variance (MANOVA) using the statistics program IBM/SPSS 
v.22.0 (IBM 2013). We used MANOVA to test for effects and interac-
tions between sex (male or female), population location (eastern or 
western; low or high elevation), and population age (collected before 
or after 1950) on forewing and hind wing shape. We used the Wilks’ 
Lambda test, a positive-valued statistic that ranges from 0 to 1. De-
creasing values of the statistic indicate effects that contribute more 
to the model. We also used the Hotelling’s trace statistical test, which 
is the sum of the eigenvalues of the test matrix. It is also a positive-
valued statistic for which increasing values indicate effects that con-
tribute more to the model. All statistical analyses were conducted with 
α = 0.05.

Results

The principal components analysis performed on hind wing and 
forewing landmarks identified important sources of geometric mor-
phometric variation (Fig. 4). Principal components analysis showed 
clear separation of male forewings (n = 166), which were narrower 
and more angular, from female forewings (n = 101), which were wider 
and more rounded (Fig. 5). Significant differences were found between 
male hind wings from eastern (n = 131) and western populations (n = 
102) (Fig. 6), as well as female hind wings from low elevations (below 
300 m) (n = 111) and from high elevations (above 300 m) (n = 157) 
(Fig. 7).

The first 3 principal components scores were tested with MANOVA, 
which showed a significant effect of sex (F = 39.108; P = 0.000), location 
(east or west) (F = 41.944; P ≤ 0.05), and elevation (low or high) (F = 
37.443; P ≤ 0.05) on wing morphology (Table 3). There were no signifi-
cant effects of age on male or female hind wings or forewings, and no 
significant effects from interactions between sex, location, elevation, 
or yr of collection.

Discussion

We found significant geometric morphometric differences between 
both sexes from eastern and western populations, between male and 
female specimens from low (below 300 m) and high elevations (at or 
above 300 m), but not between male and female specimens collected 
before and after 1950. We detected important geometric morphomet-
ric differences in the forewings of S. diana male and female pinned 
specimens at the population-level, but not in hind wings. This makes 
sense, because in butterflies, flight is driven primarily by the forewings 
and can proceed even when the hind wings are removed (Jantzen & 
Eisner 2008). We predicted that differences between male and female 

Table 1. Summary of Speyeria diana museum specimens used in this study.

Specimen source
No.  

of males
No.  

of females
No.  

from east
No.  

from west
No. from  

low elevation
No. from  

high elevation
No.  

pre-1950*

No.  
post-1950*

Carnegie Museum of Natural History 31 16 46 1 21 26 25 21
National Museum of Natural History 51 31 49 33 22 60 40 42
American Museum of Natural History 22 16 19 19 15 23 20 18
The Field Museum 29 17 46 0 22 24 26 20
British Natural History Museum 6 1 7 0 7 0 7 0
University Florida Natural History Museum 27 20 14 33 24 23 26 21

*Indicates date when specimen was captured and pinned by original collector.
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life histories would be reflected in different wing morphology between 
sexes, which was confirmed. Male S. diana specimens had narrower, 
more angular forewings than females, which had rounder and wider 
forewings. We suspect that male forewing shape in S. diana is related 
to the strong flight pattern needed for frequent patrolling, because 
it is known that longer, slimmer wings enhance lift in flight (Wootton 
1992; Grabow & Ruppell 1995). In a study similar to ours, Cespedes 
et al. (2015) also used landmark-based geometric morphometrics to 
test whether wing shapes in the moth tribe Haeterini (Satyrinae: Nym-
phalidae) and their close relatives reflected observed flight patterns. 
They found that forewing shape differed between sexes for all taxa 
studied, and found male wing shapes to be more aerodynamically ef-
ficient for gliding flight than in female wings. Our results, and those of 
Cespedes et al. (2015), show that selection can act differently on male 
and female wing shapes, reinforcing the idea that sex-specific flight 
behaviors contribute to the evolution of sexual dimorphism (Cespedes 
et al. 2015).

Other studies on Lepidoptera have found variation in forewing 
shape based on dispersal ability (Betts & Wootton 1988; Outomoro et 
al. 2012). Many migratory species are known to have narrow, elongat-

ed wings for long-distance, gliding flight. Migratory populations of the 
monarch butterfly, Danaus plexippus L. (Lepidoptera: Nymphalidae), 
for example, have been shown to have narrower, more elongated fore-
wings, for stronger flight, compared to the forewings of non-migratory 
populations, which were smaller and rounder (Altizer & Davis 2010; 
Li et al. 2016; Flockhart et al. 2017). We found that male forewings of 
S. diana from eastern populations were narrower and more angular 
than populations in the west, suggesting that males in the east demon-
strate longer distance dispersal than males in the west. Dispersal ability 
in similar butterflies is influenced by both habitat quality (Matter & 
Roland 2002), and levels of habitat fragmentation (Mennechez et al. 
2003). Our finding that western populations have rounder wings than 
those in the east suggests that western populations may have evolved 
less mobility due to the highly fragmented landscape located between 
high elevation populations, which act as refuges that inhibit dispersal.

Mitochondrial DNA data support our findings of morphological dif-
ferences between regions, as the eastern range of S. diana has been 
shown to harbor higher levels of genetic diversity among and between 
populations than those in the west (Wells et al. 2015). If narrow, angu-
lar wings are characteristic of strong flight patterns, this indicates that 
S. diana males may be more mobile in their eastern distribution, travel-
ing more frequently between populations in search of high quality nec-
tar plants or mates. The closely related Regal fritillary, Speyeria idalia 
Drury (Lepidoptera: Nymphalidae) has been described as a high gene 
flow species at a large geographical scale (in the order of hundreds 
of kilometers) (Williams et al. 2003), indicating that S. idalia demon-
strates long distance dispersal across portions of its range. The distinct 
morphology of male S. diana wings, combined with genetic differentia-
tion between males in the east and west, suggest that S. diana males 
are also a high gene flow species in the east, while those in the west 
are not. The combination of morphological and mitochondrial DNA 
differences between disjunct populations in the eastern and western 
distribution of S. diana may warrant subspecies designation, as was 
found with S. idalia, which could ultimately lead to protected status un-
der the Endangered Species Act of 1973 (Waples 1998; Williams 2001, 
2002). More data in both of these areas is necessary to pursue either 
of these designations for S. diana.

Geometric morphometric variation in wings has been attributed to 
environmental heterogeneity in a number of butterfly species (Vande-
woestijne & Van Dyck 2011; Bai et al. 2015). We found that the fore-
wings of S. diana females from high elevations were narrower than 
those of females from lower elevations. This is especially interesting, 
because S. diana recently has been shown to be shifting to higher el-
evations at a rate of 18 m per decade, while disappearing from lowland 
sites (Wells & Tonkyn 2014). Our results are similar to those document-
ed in related species, such as Hernández et al. (2010), who examined 
variation in wing morphology between populations of the invasive po-
tato moth, Tecia solanivora Polvolny (Lepidoptera: Gelechiidae) at low 
and high elevations in the central highlands of Ecuador. Not only did 
T. solanivora females have larger, wider wings than males, high eleva-
tion moths of both sexes had larger, narrow-shaped wings when com-
pared to low-elevation moths. Their results suggest that variation in 
wing morphology is an adapted response contributing to the invasion 
success of the T. solanivora in mountainous landscapes (Hernández et 
al. 2010).

Table 2. Total number of Speyeria diana museum specimens detailing the number of males, females, individuals from eastern populations, individuals from western 
populations, low elevations, high elevations, collected before 1950, and collected after 1950 used in this study.

Total specimens Total males Total females Total east Total west Total low Total high Total pre-1950 Total post-1950

267 166 101 131 102 111 157 144 122

Fig. 2. Twenty-two vein intersections on the Speyeria wing were used as land-
marks for this study based on Borror et al. 2005.
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Speyeria diana females from high elevations also may be more mo-
bile than those from lowland populations, because females with wings 
built for strong flight would be most likely to make a successful shift 
in elevation. This adaptation may be reflective of the species shifting 
upward in elevation. Interestingly, we found no effect of yr of capture 

Fig. 3. Procrustes transformation on hind wing landmarks, correcting for variation due to differences in pinned specimen orientation. Before Procrustes on left, 
after Procrustes on right.

Fig. 4. Principal component scores accounting for variation in forewing (top) 
and hind wing (bottom) landmarks. The first three principal components scores 
represent the majority of variation in the data.

Fig. 5. Principal components analysis showing separation of male (red) and 
female (blue) Speyeria diana forewing shape. Male forewings (n = 166) were 
narrower and more angular than female forewings (n = 101), which were wider 
and more rounded.

Downloaded From: https://bioone.org/journals/Florida-Entomologist on 14 Jan 2025
Terms of Use: https://bioone.org/terms-of-use



200 2018 — Florida Entomologist — Volume 101, No. 2

in our analysis, indicating that there is no evidence that wing morphol-
ogy is changing in response to the factors driving the striking changes 
that have been documented in the distribution and phenology of S. 
diana. Another interesting aspect of S. diana populations is that fe-
males are now being collected earlier per decade by 4.3 d while males, 
which emerge first in spring, have not shifted their phenology (Wells 
and Tonkyn 2014). Speyeria diana females at high elevations emerg-
ing earlier in spring, before peak violet abundance, may be required 
to search more actively for violets, which bloom earlier below 300 m 
where temperatures tend to be warmer. Females with longer, more 
angular wings may be favored at higher elevations, because stronger 
flight would assist in finding more sparsely dispersed larval host plants.

The Regal fritillary, Speyeria idalia, the closest related species to S. 
diana (De Moya et al. 2017), is declining and at risk range-wide (Swen-
gel and Swengel 2017). Patterns of intraspecific morphological and 
mtDNA differentiation have been documented between populations 
of Speyeria idalia (Williams 2001, 2002). Mitochondrial DNA sequence 

divergence, combined with ecological and natural-history data, sug-
gested that a disjunct population of S. idalia in the east represent a 
remnant of a distinct evolutionary lineage of extreme conservation 
concern. While S. diana and S. idalia have different population struc-
tures, ecologies, and life history traits, their basic biology is similar 
enough to predict the 2 species should experience similar effects from 
genetic isolation of populations. Speyeria diana populations in the 
western distribution should be monitored especially closely to prevent 
further habitat loss and isolation. The distribution and interactions 
among S. diana populations is likely strongly influenced by population-
specific habitat requirements.

Our results highlight the importance of examining and preserving 
variation, both genetic and morphometric, in natural populations be-
fore it is lost, especially in species under threat of decline. The wing 
shape of western populations of S. diana appears to be adapted for 
low dispersal, supporting other recent findings that also indicate west-
ern populations of S. diana are both spatially and genetically isolated 

Fig. 7. Principal components analysis showing separation of female Speyeria 
diana forewings from specimens collected at low (blue) and high (red) eleva-
tions. Female forewings from low elevations (n = 111) (below 300 m) were wider 
than those from higher elevations (n = 157) (above 300 m).

Fig. 6. Principal components analysis showing separation of male Speyeria di-
ana forewings from specimens collected from eastern (blue) and western (red) 
populations. Male hind wings from eastern populations (n = 131) were nar-
rower than those from western populations (n = 102).

Table 3. MANOVA performed on first three principal components scores for 11 hind wing landmarks. Values in bold are significant (P ≤ 0.005).

Effect Test Value F df Significance

Sex
(male or female)

Wilks’ Lambda
Hotelling’s Trace

0.240
3.171

39.108 6 0.000

Locality
(east or west)

Wilks’ Lambda
Hotelling’s Trace

0.929
0.077 41.944

6 0.048

Elevation
(low or high)

Wilks’ Lambda
Hotelling’s Trace

0.877
0.077

37.443 6 0.048

Year of Collection
(pre-1950, post-1950)

Wilks’ Lambda
Hotelling’s Trace

0.872
0.147

1.118 6 0.107

Locality * Sex Wilks’ Lambda
Hotelling’s Trace

0.97
0.108

11.326 6 0.256

Locality * Year of Collection Wilks’ Lambda
Hotelling’s Trace

0.061
0.065

0.808 6 0.567

Sex * Year of Collection Wilks’ Lambda
Hotelling’s Trace

0.048
0.050

0.620 6 0.714

Locality * Sex * Year of Collection Wilks’ Lambda
Hotelling’s Trace

0.031
0.032

0.396 6 0.879

Downloaded From: https://bioone.org/journals/Florida-Entomologist on 14 Jan 2025
Terms of Use: https://bioone.org/terms-of-use



Wells et al.: Geometric morphometric variation in Speyeria diana 201

(Wells and Tonkyn 2014; Wells et al. 2015). We conclude that the future 
of S. diana will require the thoughtful preservation of well-connected 
high elevation habitats, especially in the western distribution where 
dispersal is more limited than in the east.
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