Rearing Hylobius transversovittatus and Cyphocleonus achetes Larvae on Artificial Diets (Coleoptera: Curculionidae)

Author: Nada Tomic-Carruthers
Source: Florida Entomologist, 92(4) : 656-657
Published By: Florida Entomological Society
URL: https://doi.org/10.1653/024.092.0421
REARING HYLOBIUS TRANSVERSOVITTATUS AND CYPHOCLEONUS ACHETES LARVAE ON ARTIFICIAL DIETS (COLEOPTERA: CURCULIONIDAE)

NADA TOMIC-CARRUTHERS
USDA-APHIS-PPQ-CPHST, 800 Buchanan Street, Albany, CA 94710

Hylobius transversovittatus Goeze and Cyphocleonus achetes (Fahraeus) (Coleoptera: Curculionidae) are large weevils that share many life history traits. Adults feed above ground on the leaves and shoots of their larval host plants. Females oviposit in stems or roots, and larvae burrow into the roots where they feed, complete larval development, and eventually pupate. Lathrum salicaria L. and L. alatum Pursh (Lythraceae) are host plants for H. transversovittatus (Blossey 1994), and Centaurea maculosa L., and C. duffusa L. (Centaureaceae) are the primary hosts of C. achetes (Stinson et al. 1994). These weevils are known to have a narrow host range and are agents for biological control of weeds.

Our initial studies on the development of artificial diets for root-feeding biological control agents began with adaptations of the Gast diet (Robertson & Wright 1984). We formulated a fully functional diet for H. transversovittatus that yielded adults with a 35% survival rate (Tomic-Carruthers 2007). Here we present an improved diet and handling system that increased H. transversovittatus survival, and extended use of the diet for other insects.

Most of the ingredients in our diet were industrial grade products obtained from Bio-Serv or directly from the producers. Pharmamedia® (Traders Protein, Memphis, TN) and common chemical ingredients were ordered from the Sigma-Aldrich Company. The diet was prepared as previously described (Tomic-Carruthers 2007) except for several modifications to facilitate and simplify the process. The improved diet was mixed in 1-L batches with a Cusinart Pro Classic household food processor. Dry ingredients (Table 1) were mixed thoroughly in the food processor with the exception of the vitamins, antibiotic, and agar. Half of the required volume of tap water (65°C) was added to the mixture and blended for 3 min. The remaining water was combined with agar and heated to boiling in a microwave oven before it was added to the mixture in the food processor and blended for 30 s. The vitamins and Aureomycin (5.5% active) then were added to the mixture at 60°C, followed by blending for another 2 min. Finally, corn oil and HCl were added and blended for 30 s. The prepared diet was transferred to an automated biscuit maker (Atlas) and dispensed into rearing containers. Uncovered containers were left in a clean air bench for 3 h to cool before covering. Sealed cups were refrigerated until eggs or larvae were added.

Our original diet formulation for H. transversovittatus (Tomic-Carruthers 2007) was improved through a series of experiments on its nutrients and physical properties. Changes to protein and sterol concentrations did not increase yields; however, significant improvements in insect survival were achieved by augmenting cellulose and agar levels. This modification made the diet harder and dryer. We also changed the rearing containers to fit the biological requirements of the insects more closely. Originally, the diet was poured into rearing trays that contained 32 individual tubs (4 × 4 × 2.5 cm, l:w:h) (BIO-RT-32 from CD International, Bio-Serve). This provided an adequate amount of diet for each insect, but was problematic as early instars often burrowed to the bottom of the dish and died. To resolve this problem, 30-mL Cometware® (www.instawares.com) plastic portion cups (2.5 cm bottom, 4 cm top diameters, and 4.5 cm h) were tested. An experiment was performed in which 22 ± 3 mL of diet was dispensed into each of 30 individual cups versus 32 tubs (10 replicates). An individual egg was placed on the diet surface in each container and allowed to hatch and tunnel into the medium held at 25°C. After 130 d, each dish was examined to determine survival or instar at death. After eliminating con-

TABLE 1. INGREDIENTS FOR THE ROOT WEEVIL DIETS.

<table>
<thead>
<tr>
<th>Ingredients1</th>
<th>Hylobius</th>
<th>Cyphocleonus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry (g)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sucrose</td>
<td>15.9</td>
<td>32.0</td>
</tr>
<tr>
<td>Pharmamedia</td>
<td>63.5</td>
<td>32.0</td>
</tr>
<tr>
<td>Isolated soy protein</td>
<td>22.7</td>
<td>11.0</td>
</tr>
<tr>
<td>Wesson’s salt</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>Ascorbic acid</td>
<td>1.7</td>
<td>1.7</td>
</tr>
<tr>
<td>Potassium sorbate</td>
<td>1.1</td>
<td>1.2</td>
</tr>
<tr>
<td>Methyl paraben</td>
<td>1.6</td>
<td>1.6</td>
</tr>
<tr>
<td>Cellulose</td>
<td>150.0</td>
<td>150.0</td>
</tr>
<tr>
<td>Vitamin mix</td>
<td>2.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Automyacin 5.5%</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Agar</td>
<td>22.0</td>
<td>22.0</td>
</tr>
<tr>
<td>Liquid (mL)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>860.0</td>
<td>900.0</td>
</tr>
<tr>
<td>Corn oil</td>
<td>1.9</td>
<td>1.8</td>
</tr>
<tr>
<td>HCl 1N</td>
<td>0.8</td>
<td>0.9</td>
</tr>
</tbody>
</table>

1(1 L Final volume).
tainers with un-hatched eggs, the sample size was
\(n = 550 \) for pooled replicates (281 tubs and 269

cups). Adult yield was 63% in cups and 26% in
tubs (\(P < 0.0005; \) binomial one-tailed test, SPSS
14.0). This improved yield was a consequence of
increased diet depth in cups verses tubes (4 cm vs.
2.5 cm). Deeper diet cups allowed neonate larvae
to tunnel downward longer and establish in the
diet before reaching the bottom of the container.
Combining these physical improvements with
changes in diet formulation (Table 1) eventually
resulted in 85% survival of \(H. \) transversovittatus
from neonate larvae to emerging adults.

Further modifications of the diet and rearing
system facilitated the production of both \(H. \) trans-
versovittatus and \(C. \) achetes. Although the \(C. \)
achetes diet is still under development, 9 genera-
tions of this root-feeder have been successfully
reared with slight variations. First instar mortal-
ity was initially a problem with this diet, as it was
with \(H. \) transversovittatus, but depth of the diet
was not the cause. The majority of dead neonate
larvae were found on the diet surface or between
the container wall and diet. Establishment and
survival of \(Cyphocleonus \) achetes was improved by
shredding solidified diet with a food processor be-
fore putting it into rearing containers. Shredding
increased yields from 10-20% to approximately
40-50%, exceeding the survival of a previously de-
developed diet based on wheat germ (Goodman et al.
2006). Presented diets differ significantly in the
protein to sugar ratio (5.3:1 \(H. \) bius vs 1.3:1 \(C. \)
phocleonus diet, respectively, Table 1). The re-
quirement of \(H. \) transversovittatus for signifi-
cantly higher protein levels in the larval diet is
very likely associated with adult longevity. \(H. \)
bius transversovittatus adults can live several
years (McAvoy & Kok 1999), while \(C. \) achetes lives
only 1 season.

SUMMARY

A new meridic diet was developed to support the
development of 2 beneficial root-feeding wee-
vils important for biological control of invasive
weeds. Although this diet is already in use in mul-
tiple insectaries for mass production of \(H. \) trans-
versovittatus, it and the associated rearing system
have not been published. In addition to the pri-
mary purpose for the diet, it has been used to rear
the red palm weevil, \(Rhynochophorus \) ferrugineus
Olive. Another potential use is for rearing of var-
ious root-feeding larvae of Coleoptera and Lepi-
doptera for biological control (M. Cristofaro, per-
sonal communication, E-mail: mcristofaro@casaccia.enea.it). The diet may support development of
a number of other root and stem feeding insects.

ACKNOWLEDGMENTS

I am grateful to Rosita De Leone and David Madi-
eros for dedicated and skilled technical assistance. I
thank Todd Shelly and Ray Carruthers for valuable cri-
ticisms and comments. This work has been partly sup-
ported by USDI Bureau of Land Management through
Interagency Agreement No. 08-8100-0361-IA.

REFERENCES CITED

BLOSSEY, B. 1994. Host specificity and environmental
impact of the weevil \(Hyllobius \) transversovittatus, a
biological control agent of purple loosestrife (\(Lyth-
rum salicaria \)). Weed Sci. 42: 128-133.

GOODMAN, C. L., PHIPPS, S. J., WAGNER, R. W., PETERS,
P., WRIGHT, M. K., NABLI, H., SAATHOFF, S., VICK-
Growth and development of the knapweed root wee-
vil, \(Cyphocleonus \) achetes, on a meridic larval diet.
Biol. Control. 36: 238-246.

MCAVOY, T. J., AND KOK, L. T. 1999. Effect of tempera-
ture on eggs, fecundity, and adult longevity of \(Hyl-

STINSON, C. S. A., SCHROEDER, D., AND MARQUARD, T. K.
1994. Investigations on \(Cyphocleonus \) achetes (Fahr.)
(Col., Curculionidae), a potential biological control
agent of spotted knapweed (\(Centaurea \) maculosa
Lam.) and diffuse knapweed (\(C. \) diffusa Lam.) Com-
positeae in North America. J. Appl. Entomol. 117: 35-
50.

TOMIC-CARRUTHERS, N. 2007. Development of meridic
diet for \(Hyllobius \) transversovittatus (Coleoptera:
Curculionidae) and role of carbohydrates in feeding,
growth, and survival of larvae. J. Econ. Entomol.
100: 1062-1070.