Translator Disclaimer
1 September 2016 A New Live Trap for the Acoustically Orienting Parasitoid Fly Emblemasoma erro (Diptera: Sarcophagidae)
Author Affiliations +
Abstract

Parasitoids that locate their hosts by eavesdropping on the acoustic signals of other insects can be collected in traps baited with audio signals that mimic the sounds of the parasitoid's hosts. I describe a new acoustic trap designed to capture Emblemasoma erro Aldrich (Diptera: Sarcophagidae), an eavesdropping parasitoid of cicadas whose phonotactic behavior differs from that of the acoustic parasitoids targeted by previous trap designs. Specifically, unlike some other acoustic parasitoids, E. erro often remains at an artificial sound source only a few seconds, so the new trap features multiple, oblique side entrance funnels with large outer apertures that allow E. erro to rapidly access the trap's interior. The trap also has a modular design that allows the broadcast loudspeaker to be used independently of the trapping apparatus, and the trap is lightweight and easily transported in the field.

Ever since the discovery that some species of parasitoid flies are attracted to the acoustic mating calls of their host insects (Cade 1975; Soper et al. 1976), researchers have exploited the phonotactic hostfinding behaviors of these eavesdropping parasitoids as a means for collecting them in the field. Typically, a loudspeaker is used to broadcast an audio signal that mimics the sounds of the parasitoids' hosts, and parasitoids that are attracted to the loudspeaker are either collected by hand (e.g., Soper et al. 1976; Fowler & Kochalka 1985; Wagner 1996; Lakes-Harlan et al. 2000; Köhler & Lakes-Harlan 2001; de Vries & Lakes-Harlan 2005; Wagner & Basolo 2007) or captured using sticky traps (e.g., Fowler 1987; Walker 1993; Allen 1998; Kolluru & Zuk 2001), electrified wire grids (Mangold 1978; Walker 1986), or custom-built live traps (e.g., Cade 1975, 1979; Fowler 1988; Walker 1989; Allen et al. 1999). However, if non-destructive, automated sampling is desired, then live traps are the only viable option.

Detailed plans have been published for live traps to catch two species of tachinid acoustic parasitoids, Ormia ochracea (Bigot) (Diptera: Tachinidae) (Cade 1979; Walker 1989) and O. depleta (Wiedemann) (Fowler 1988). These traps all use the same basic principle of a box with an internal loudspeaker at one end and one or more inverted funnels or slits that guide flies to the box's interior. The slit trap design of Walker (1989) (or variations on his design) has been the most widely used (e.g., Walker 1993; Gray & Cade 1999; Gray et al. 2007; Farris et al. 2008; Vincent & Bertram 2010a,b).

In all published designs, the entrances to the funnels or tapered slits leading to the interior of the trap occupy a rather small portion of the outer area of the trap (e.g., in Fowler's most successful design, the entrances to the funnels leading to the trap's interior account for only about 3% of the outer surface area) or are restricted to only one side of the trap, as with Cade's and Walker's designs. Flies that land on these traps might therefore need to spend considerable time exploring the trap's exterior before they find an entrance leading to the loudspeaker. This evidently causes little problem for trapping acoustic parasitoids such as O. ochracea that spend several minutes or more at a sound source searching for possible larviposition sites (Cade 1975; Walker 1989; Allen et al. 1999), but not all species of acoustic parasitoids exhibit such behavior.

Emblemasoma erro Aldrich (Diptera: Sarcophagidae) is an acoustic parasitoid of cicadas (Hemiptera: Cicadidae) in central North America (Stucky 2015), and in 2010, I began a series of field studies that required trapping live E. erro. From preliminary observations of E. erro's phonotactic response to a loudspeaker broadcasting cicada calls, I found that individuals of E. erro often departed only a few seconds after initially approaching the loudspeaker, or, if they stayed longer, engaged in little exploratory walking around the sound source. Thus, traps that require parasitoids to persistently search the trap's exterior to find an entrance seemed unlikely to work well for E. erro.

Here, I describe a new acoustic live trap specifically designed for acoustic parasitoids such as E. erro whose phonotactic behaviors differ from those of O. ochracea and similar species. The initial design was completed during the summer of 2011, and tests of the trap's performance were conducted in 2011 and 2012 at field sites in Geary, McPherson, and Reno counties in central Kansas.

The trap consists of two main components (Figs. 1 and 2). First, the “speaker box” is a simple wooden box with an upward-facing loudspeaker mounted in the middle of the top face and a piece of aluminum window screen covering the aperture of the speaker to prevent flies from contacting the loudspeaker's components. Pyle PH44 loudspeakers (Pyle Audio Inc., Brooklyn, New York) were used for trap design and testing, but most “tweeter” loudspeakers should have an appropriate frequency response range for reproducing insect sounds. Tweeters should generally be used with a high-pass filter of some sort (such as an in-line capacitor) to avoid audio distortion or speaker damage caused by low frequencies.

Fig. 1.

The complete live trap deployed in the field. Captured flies are visible in the holding jar assembly at the top of the trap box.

f01_559.jpg

Fig. 2.

Details of trap construction showing a) the trap box and b) the speaker box. To reveal internal components, the front-facing, side plywood panels of the trap and speaker boxes are not illustrated. Also, for clarity, only 3 of the 5 wire screen cones of the trap box are illustrated.

f02_559.jpg

The second main trap component, the “trap box,” is an approximate cube with extensions on the bottom to fit securely over the speaker box. Each vertical side of the trap box has an oblique, circular screen cone leading toward the loudspeaker, and the top of the trap box has a screen cone leading directly downward toward the center of the loudspeaker. Patterns for cutting the cones out of flat aluminum window screen are provided as supplementary data for this paper (online at  http://purl.fcla.edu/fcla/entomologist/browse). The top of the trap box has a jar assembly for retaining captured flies similar in design to that of Walker (1989).

This trap design includes two elements that set it apart from previous acoustic traps. First, unlike published trap designs, a large portion of the external area of the trap box is occupied by the outer entrances of the cones leading to the trap's interior (just over 46%). Second, the oblique cones on the sides give flies direct paths to the loudspeaker from most locations on the outside of the trap box. These two features were intended to minimize the time required for E. erro to locate an entrance to the trap's interior, and observations in the field confirmed that many flies were able to access the interior of the trap within a few seconds of their initial arrival.

Although the side entrance funnels make the trap more labor intensive to construct than top-entrance-only designs, such as that of Walker (1989), field tests confirmed that the side entrances are especially important for capturing E. erro. Of 85 flies observed entering the traps during tests in 2012, 81 (95.3%) entered through one of the side cones whereas only 4 (4.7%) entered from the top. If flies have no preference for how they enter the trap, they would be expected to enter through the top with probability 0.2 and through the sides with probability 0.8 (the opening diameters of all 5 entrance cones are the same). A 2-tailed binomial test of the data rejected this null hypothesis (P < 0.001), indicating that flies preferentially entered the trap through the sides rather than the top. The 95% confidence interval for the proportion of flies that entered through one of the sides, using the method of Wilson (Wilson 1927; Agresti & Coull 1998), was 0.885–0.982.

Other advantages of this trap design are its light weight and modularity. The combined mass of the speaker box and trap box (not including the mass of the speaker and mounting hardware, which are brand dependent) was 2.88 kg (average of 3 complete traps), so the traps are quite portable. The modular design of the trap, with separate speaker box and trap box components, makes the speaker box convenient to use by itself for manual collecting, simple presence/absence surveys, or behavioral observations.

If the trap is to be operated continuously for long periods of time (e.g., more than an hour or two), a more spacious holding jar assembly at the top of the trap is recommended to avoid excessive crowding. Crowding appeared to agitate the flies and increase the chances that they left the holding jar assembly and returned to the main trap box, which could increase the probability of an escape.

Despite the trap's effectiveness, I observed many flies that either landed on the outside of the trap and then failed to move closer to the sound source, left before entering the trap, or approached the trap in flight but failed to land. Both Fowler (1988) and Walker (1989) reported similar results when testing their trap designs. Because flies that initially leave the trap sometimes make one or more return visits (B. Stucky, personal observation), it is difficult to estimate the percentage of flies attracted to the trap that ultimately evade capture. It also was not obvious how the trap design could be further improved to increase the capture rate.

Nevertheless, my use of these traps over multiple field seasons has demonstrated both their utility for capturing E. erro and their suitability for routine field work. After dozens of hours of use in a variety of habitats, and capturing hundreds of flies, these traps have so far required virtually no maintenance. As a next step, it would be useful to assay the performance of this design for species of acoustic parasitoids besides E. erro. Tests with O. depleta would be especially interesting because this species proved difficult to capture with previous live trap designs (Fowler 1988).

Many thanks to Bruce Stucky for helping refine the trap design and for providing the tools and woodworking expertise needed for trap construction. I also thank Erin Stucky and Rob Guralnick for their comments on the manuscript and figures. This work was supported in part by funding from the University of Colorado Department of Ecology and Evolutionary Biology and the University of Colorado Museum of Natural History.

References Cited

1.

Agresti A, Coull BA. 1998. Approximate is better than “exact” for interval estimation of binomial proportions. The American Statistician 52: 119. Google Scholar

2.

Allen GR. 1998. Diel calling activity and field survival of the bushcricket, Sciarasaga quadrata (Orthoptera: Tettigoniidae): a role for sound-locating parasitic flies? Ethology 104: 645–660. Google Scholar

3.

Allen GR, Kamien D, Berry O, Byrne P, Hunt J. 1999. Larviposition, host cues, and planidial behavior in the sound-locating parasitoid fly Homotrixa alleni (Diptera: Tachinidae). Journal of Insect Behavior 12: 67–79. Google Scholar

4.

Cade W. 1975. Acoustically orienting parasitoids: fly phonotaxis to cricket song. Science 190: 1312–1313. Google Scholar

5.

Cade W. 1979. The evolution of alternative male reproductive strategies in field crickets, pp. 343–379 In Blum MS, Blum NA [eds.], Sexual Selection and Reproductive Competition in Insects. Academic Press, New York, New York. Google Scholar

6.

de Vries T, Lakes-Harlan R. 2005. Phonotaxis of the female parasitoid Emblemasoma auditrix (Diptera, Sarcophagidae) in relation to number of larvae and age. Zoology 108: 239–246. Google Scholar

7.

Farris HE, Oshinsky ML, Forrest TG, Hoy RR. 2008. Auditory sensitivity of an acoustic parasitoid (Emblemasoma sp., Sarcophagidae, Diptera) and the calling behavior of potential hosts. Brain, Behavior and Evolution 72: 16–26. Google Scholar

8.

Fowler HG. 1987. Field behavior of Euphasiopteryx depleta (Diptera: Tachinidae): phonotactically orienting parasitoids of mole crickets (Orthoptera: Gryllotalpidae: Scapteriscus). Journal of the New York Entomological Society 95: 474–480. Google Scholar

9.

Fowler HG. 1988. Traps for collecting live Euphasiopteryx depleta (Diptera: Tachinidae) at a sound source. Florida Entomologist 71: 654–656. Google Scholar

10.

Fowler HG, Kochalka JN. 1985. New record of Euphasiopteryx depleta (Diptera: Tachinidae) from Paraguay: attraction to broadcast calls of Scapteriscus acletus (Orthoptera: Gryllotalpidae). Florida Entomologist 68: 225–226. Google Scholar

11.

Gray DA, Cade WH. 1999. Sex, death, and genetic variation: natural and sexual selection on cricket song. Proceedings of the Royal Society B: Biological Sciences 266: 707–709. Google Scholar

12.

Gray DA, Banuelos C, Walker S, Cade W, Zuk M. 2007. Behavioural specialization among populations of the acoustically orienting parasitoid fly Ormia ochracea utilizing different cricket species as hosts. Animal Behaviour 73: 99–104. Google Scholar

13.

Köhler U, Lakes-Harlan R. 2001. Auditory behaviour of a parasitoid fly (Emblemasoma auditrix, Sarcophagidae, Diptera). Journal of Comparative Physiology A: Sensory, Neural, and Behavioral Physiology 187: 581–587. Google Scholar

14.

Kolluru GR, Zuk M. 2001. Parasitism patterns and the size-fecundity relationship in the acoustically orienting dipteran parasitoid Ormia ochracea. Canadian Journal of Zoology 79: 973–979. Google Scholar

15.

Lakes-Harlan R, Stölting H, Moore TE. 2000. Phonotactic behaviour of a parasitoid fly (Emblemasoma auditrix, Diptera, Sarcophagidae) in response to the calling song of its host cicada (Okanagana rimosa, Homoptera, Cicadidae). Zoology 103: 31–39. Google Scholar

16.

Mangold JR. 1978. Attraction of Euphasiopteryx ochracea, Corethrella sp. and gryllids to broadcast songs of the southern mole cricket. Florida Entomologist 61: 57–61. Google Scholar

17.

Soper RS, Shewell GE, Tyrrell D. 1976. Colcondamyia auditrix nov. sp. (Diptera: Sarcophagidae), a parasite which is attracted by the mating song of its host, Okanagana rimosa (Homoptera: Cicadidae). The Canadian Entomologist 108: 61–68. Google Scholar

18.

Stucky BJ. 2015. Infection behavior, life history, and host parasitism rates of Emblemasoma erro (Diptera: Sarcophagidae), an acoustically hunting parasitoid of the cicada Tibicen dorsatus (Hemiptera: Cicadidae). Zoological Studies 54: 1–17. Google Scholar

19.

Vincent CM, Bertram SM. 2010a. Collection and laboratory culture of Ormia ochracea (Diptera: Tachinidae). Journal of Entomological Science 45: 1–7. Google Scholar

20.

Vincent CM, Bertram SM. 2010b. Crickets groom to avoid lethal parasitoids. Animal Behaviour 79: 51–56. Google Scholar

21.

Wagner WE. 1996. Convergent song preferences between female field crickets and acoustically orienting parasitoid flies. Behavioral Ecology 7: 279–285. Google Scholar

22.

Wagner WE, Basolo AL. 2007. Host preferences in a phonotactic parasitoid of field crickets: the relative importance of host song characters. Ecological Entomology 32: 478–484. Google Scholar

23.

Walker TJ. 1986. Monitoring the flights of field crickets (Gryllus spp.) and a tachinid fly (Euphasiopteryx ochracea) in north Florida. Florida Entomologist 69: 678–685. Google Scholar

24.

Walker TJ. 1989. A live trap for monitoring Euphasiopteryx and tests with E. ochracea (Diptera: Tachinidae). Florida Entomologist 72: 314–319. Google Scholar

25.

Walker TJ. 1993. Phonotaxis in female Ormia ochracea (Diptera: Tachinidae), a parasitoid of field crickets. Journal of Insect Behavior 6: 389–410. Google Scholar

26.

Wilson EB. 1927. Probable inference, the law of succession, and statistical inference. Journal of the American Statistical Association 22: 209. Google Scholar
Brian J. Stucky "A New Live Trap for the Acoustically Orienting Parasitoid Fly Emblemasoma erro (Diptera: Sarcophagidae)," Florida Entomologist 99(3), 559-562, (1 September 2016). https://doi.org/10.1653/024.099.0337
Published: 1 September 2016
JOURNAL ARTICLE
4 PAGES


SHARE
ARTICLE IMPACT
Back to Top