Translator Disclaimer
1 May 2006 IN VITRO COMPARISON OF SIX DIFFERENT MATRIX SYSTEMS FOR THE CULTIVATION OF HUMAN CHONDROCYTES
Author Affiliations +
Abstract
In recent years, a great variety of different matrix systems for the cultivation of chondrocytes have been developed. Although some of these scaffolds show promising experimental results in vitro, the potential clinical value remains unclear. In this comparative study, we propagated human articular chondrocytes precultivated in monolayer culture on six different scaffolds (collagen gels, membranes and sponges) under standardized in vitro conditions. Mechanical properties of the matrix systems were not improved significantly by cultivation of human chondrocytes under the given in vitro conditions. The gel systems (CaReS, Ars Artho, Germany and Atelocollagen, Koken, Japan) showed a homogeneous cell distribution; chondrocytes propagated on Chondro-Gide (Geistlich Biomaterials, Switzerland) and Integra membranes (Integra, USA) were building multilayers. Only few cells penetrated the two Atelocollagen honeycomb sponges (Koken, Japan). During cultivation, chondrocytes propagated on all systems showed a partial morphological redifferentiation, which was best with regard to the gel systems. In general, only small amounts of collagen type-II protein could be detected in the pericellular region and chondrocytes failed to build a territorial matrix. During the first two weeks of cultivation, the two gel systems showed a significantly higher collagen type-II gene expression and a lower collagen type-I gene expression than the other investigated matrix systems. Although collagen gels seem to be superior when dealing with deep cartilage defects, membrane systems might rather be useful in improving conventional autologous chondrocyte transplantation or in combination with gel systems.
KARSTEN GAVÉNIS, BERNHARD SCHMIDT-ROHLFING, RALF MUELLER-RATH, STEFAN ANDEREYA and ULRICH SCHNEIDER "IN VITRO COMPARISON OF SIX DIFFERENT MATRIX SYSTEMS FOR THE CULTIVATION OF HUMAN CHONDROCYTES," In Vitro Cellular & Developmental Biology - Animal 42(5), (1 May 2006). https://doi.org/10.1290/0511079.1
Received: 10 November 2005; Accepted: 16 January 2006; Published: 1 May 2006
JOURNAL ARTICLE
9 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
ARTICLE IMPACT
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top