Translator Disclaimer
1 January 2008 New Quartz Optical Stimulated Luminescence Ages for Beach Ridges on the St. Vincent Island Holocene Strandplain, Florida, United States
Author Affiliations +
Abstract
St. Vincent Island, located on the northwest Gulf of Mexico coast of Florida, U.S.A., preserves a well-developed beach ridge plain that is generally believed to have begun to form during the mid-Holocene period. This study evaluates the potential of optical stimulated luminescence (OSL) to appraise the proposed evolution and progradation of this strand-plain. Optical stimulated luminescence was used to obtain the ages of the quartz samples extracted from seven vibracores at two depth intervals. The single-aliquot regenerative-dose (SAR) OSL ages increase from the shores on the Gulf of Mexico to St. Vincent Sound. The younger ridge set yielded ages of 370 ± 49 to 1890 ± 292 years (AD 2004 datum) conferring an interridge accretion time range of 78 to 148 years assuming uniform sediment accumulation. The oldest ridge set yielded ages of 2733 ± 404 to 2859 ± 340 years, consistent with the estimated age based on archaeological materials of 3000–4000 years ago. For the southwestern beach ridge set, the ages provide insights on the aeolian accumulation and reworking processes effective throughout the ridges despite their vegetation cover. Our results highlight the potential of OSL as an application to use not only for dating but also for coastal dynamics assessments. The SAR–OSL ages presented herein provide new reliable absolute ages on the beach ridge sequence of St. Vincent Island and improve the age control on formation of barrier island sequences in the Florida panhandle region.
Gloria I. López and W. Jack Rink "New Quartz Optical Stimulated Luminescence Ages for Beach Ridges on the St. Vincent Island Holocene Strandplain, Florida, United States," Journal of Coastal Research (JCR) 24(sp1), (1 January 2008). https://doi.org/10.2112/05-0473.1
Received: 7 March 2005; Accepted: 2 December 2005; Published: 1 January 2008
JOURNAL ARTICLE
14 PAGES


SHARE
ARTICLE IMPACT
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top