How to translate text using browser tools
1 April 2010 Insecticide Resistance Profiles and Synergism in Field Populations of the German Cockroach (Dictyoptera: Blattellidae) from Singapore
Ru-Yuan Chai, Chow-Yang Lee
Author Affiliations +
Abstract

The resistance profiles of 22 field-collected populations of the German cockroach, Blattella germanica (L.) (Dictyoptera: Blattellidae), from various localities in Singapore were determined by topical bioassay against novel and conventional insecticides from six classes: 1) pyrethroid (beta-cyfluthrin, deltamethrin), 2) carbamate (propoxur), 3) organophosphate (chlorpyrifos), 4) phenyl pyrazole (fipronil), 5) neonicotinoid (imidacloprid), and 6) oxadiazine (indoxacarb). Compared with a laboratory susceptible strain, resistance levels ranged from 3.0 to 468.0× for the pyrethroids, from 3.9 to 21.5× for the carbamate, from 1.5 to 22.8× for the organophosphate, from 1.0 to 10.0× for phenyl pyrazole, and were absent or low for the neonicotinoid (0.8–3.8×) and the oxadiazine (1.4–5.3×). One strain demonstrated broad-spectrum resistance to most of the insecticides. Synergism studies using piperonyl butoxide (PBO) and S,S,S-tributylphosphorotrithioate (DEF) in combination with a discriminating dose (LD99) of selected insecticides were conducted to test for possible resistance mechanisms. Resistance to pyrethroid was reduced with PBO and DEF, suggesting the involvement of P450 monooxygenase and esterases in conferring resistance. Propoxur resistance also was suppressed with PBO and DEF, and coadministration of both synergists resulted in complete negation of the resistance, indicating the involvement of both P450 monooxygenase and esterase. In six B. geimanica field strains evaluated, esterases were found to play a role in chlorpyrifos resistance, whereas the P450 monoxygenase involvement was registered in three strains, Additional resistance mechanisms such as kdr-type and Rdl mutation contributing toward pyrethroid and fipronil resistance, respectively, also may be involved in some strains in which the resistance levels were not affected by the synergists. We conclude that insecticide resistance is prevalent in field German cockroach populations in Singapore.

© 2010 Entomological Society of America
Ru-Yuan Chai and Chow-Yang Lee "Insecticide Resistance Profiles and Synergism in Field Populations of the German Cockroach (Dictyoptera: Blattellidae) from Singapore," Journal of Economic Entomology 103(2), 460-471, (1 April 2010). https://doi.org/10.1603/EC09284
Received: 25 August 2009; Accepted: 1 December 2009; Published: 1 April 2010
JOURNAL ARTICLE
12 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

KEYWORDS
Blattella germanica
insecticide resistance
resistance mechanism
Singapore
synergism
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top