Translator Disclaimer
1 February 2004 Minimizing the Impact of the Mosquito Adulticide Naled on Honey Bees, Apis mellifera (Hymenoptera: Apidae): Aerial Ultra-Low-Volume Application Using a High-Pressure Nozzle System
Author Affiliations +
Abstract

The impact of the mosquito adulticide naled on honey bees, Apis mellifera L., was evaluated by exposing test beehives to nighttime aerial ultra-low-volume (ULV) applications using a high-pressure nozzle system. The tests were conducted during routine mosquito control missions at Manatee County, Florida, in summer 2000. Two treatment sites were sprayed a total of four times over a 10-wk period. Honey bees, which clustered outside of the hive entrances, were subjected to naled exposure during these mosquito control sprays. The highest average naled ground deposition was 2,688 μg/m2 at the Port Manatee site, which resulted in statistically significant bee mortality (118) compared with the controls. At the Terra Ceia Road site, an intermediate level of naled deposition was found (1,435 μg/m2). For this spray mission, the range of dead bees per hive at Terra Ceia was 2 to 9 before spraying and 5 to 36 after naled application. Means of all other naled ground depositions were <850 μg/m2. We concluded that substantial bee mortality (>100 dead bees) resulted when naled residue levels were >2,000 μg/m2 and honey bees were clustered outside of the hive entrances during mosquito adulticide applications. Compared with the flat-fan nozzle systems currently used by most of Florida’s mosquito control programs, the high-pressure nozzle system used in this experiment substantially reduced environmental insecticide contamination and lead to decreased bee mortality. Statistical analysis also showed that average honey yield at the end of the season was not significantly reduced for those hives that were exposed to the insecticide.

He Zhong, Mark Latham, Steve Payne, and Cate Brock "Minimizing the Impact of the Mosquito Adulticide Naled on Honey Bees, Apis mellifera (Hymenoptera: Apidae): Aerial Ultra-Low-Volume Application Using a High-Pressure Nozzle System," Journal of Economic Entomology 97(1), 1-7, (1 February 2004). https://doi.org/10.1603/0022-0493-97.1.1
Received: 7 March 2003; Accepted: 1 September 2003; Published: 1 February 2004
JOURNAL ARTICLE
7 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
ARTICLE IMPACT
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top