Translator Disclaimer
1 December 2004 Rainfastness of a Microencapsulated Sex Pheromone Formulation for Codling Moth (Lepidoptera: Tortricidae)
Author Affiliations +
Abstract

The rainfastness of a microencapsulated sex pheromone formulation for codling moth, Cydia pomonella (L.), was evaluated in a series of laboratory experiments with detached apple, pear, and walnut leaves. Increasing the intensity and duration of simulated rainfall significantly increased the removal of microcapsules from both the top and bottom of apple leaves. The removal of microcapsules was significantly higher from the top versus the bottom of leaves at all rates tested. Leaf angle was a significant factor affecting the removal of microcapsules from the top surface of apple leaves with fewer microcapsules removed, because leaves were oriented with a steeper downward angle. Both leaf surfaces of apple and pear retained a higher proportion of microcapsules than walnut leaves, and the bottom surface of apple leaves retained significantly more than pear leaves. Three spray adjuvants were evaluated as stickers for microcapsules. No difference was found in the number of microcapsules deposited on apple leaves among three stickers tested at rates from 0.06 to 0.25%. However, in a second test a latex sticker significantly increased the deposition of microcapsules on apple leaves compared with a polyvinyl polymer and a pine resin sticker at a rate of 0.06%. Significantly more microcapsules were retained on the bottom versus the top of apple leaves with all stickers. The latex and polyvinyl stickers significantly increased the retention of microcapsules versus the pine resin sticker and the control on apple leaves. In another test, the addition of 0.06% latex sticker did not increase the deposition of microcapsules on any of the three leaf types. However, the addition of the latex sticker significantly increased the retention of microcapsules on the top of apple and pear leaves and the bottom of apple leaves. The addition of a latex sticker did not affect the retention of microcapsules on walnut leaves.

A. L. Knight, T. E. Larsen, and K. C. Ketner "Rainfastness of a Microencapsulated Sex Pheromone Formulation for Codling Moth (Lepidoptera: Tortricidae)," Journal of Economic Entomology 97(6), 1987-1992, (1 December 2004). https://doi.org/10.1603/0022-0493-97.6.1987
Received: 27 April 2004; Accepted: 1 July 2004; Published: 1 December 2004
JOURNAL ARTICLE
6 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
ARTICLE IMPACT
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top