Translator Disclaimer
1 April 2012 Ocean-Based Nurseries for Cultured Lobster (Homarus americanus Milne Edwards) Postlarvae: Field Experiments off the Coast of Eastern Maine to Examine Effects of Flow and Container Size on Growth and Survival
Author Affiliations +
Abstract

Historically, stock enhancement programs for American lobster, Homarus americanus, have a common theme: production and release of large numbers of stage IV or stage V individuals. However, these animals are difficult to mark, highly mobile when released on the bottom, and susceptible to a wide array of predators, and their claws have yet to develop bilateral asymmetry. Many of these attributes make it difficult to test the efficacy of hatch-and-release efforts. It is possible to hold postlarval lobsters individually in the laboratory or hatchery and provide food regularly for several months to release older, larger individuals (as with enhancement efforts in Europe with Homarus gammarus). However, the costs to do so compared with the value of commercial-size animals makes this practice cost prohibitive. Attempts to reduce costs of rearing early postlarvae to larger sizes in ocean-based nursery cages in eastern Maine for periods of longer than 1 y have resulted in variable survival (in general, <50%) and slow growth (doubling in carapace length (CL) from 4.2–8.9 mm). A series of field trials (2004 to 2010) examined methods to improve survival rates and enhance growth with the goal of producing animals large enough to apply a physical tag that can be seen easily by fishers and scientists interested in testing directly the efficacy of enhancement efforts. The effect of flow rates into and out of various types of containers (350 mL and 440 mL) holding individual, cultured stage IV lobsters was examined experimentally during a 309-day period from August 2004 to July 2005 in off-bottom, ocean-based nursery cages deployed in shallow (12 m) water near Great Wass Island, Beals, ME. Mean survival rate varied directly with flow as animals in containers with the greatest exchange of seawater demonstrated survival rates of ca. 90% compared with ca. 30% in containers allowing lower flow rates. Sediment deposition in the low-flow rate containers tended to be high, and was associated with significantly lower mean lobster survival. In a separate field trial in shallow water from August 2009 to October 2010 (419 days), lobster growth in submerged wooden trays was assessed using 5 different container sizes that ranged from 0.02–0.26 m2 (ca. 1.5–21 L). Growth was best described by a sigmoidal function, with a strong linear component over container sizes between 0.02 m2 and 0.13 m2 (ca. 1.5–10 L), and no significant difference observed in mean CL of lobsters in the largest 2 container sizes. Final mean CL and mass (23.9 ± 1.4 mm and 10.7 ± 2.1 g, respectively, ±95% CI) of animals in the 2 largest containers was 57.4% and 349% greater, respectively, than animals in the smallest containers. Rearing cultured individuals of H. americanus to large sizes in ocean-based nursery cages may provide managers of stock enhancement programs with a more viable assessment tool than those used traditionally.

Brian F. Beal and George C. Protopopescu "Ocean-Based Nurseries for Cultured Lobster (Homarus americanus Milne Edwards) Postlarvae: Field Experiments off the Coast of Eastern Maine to Examine Effects of Flow and Container Size on Growth and Survival," Journal of Shellfish Research 31(1), 177-193, (1 April 2012). https://doi.org/10.2983/035.031.0121
Published: 1 April 2012
JOURNAL ARTICLE
17 PAGES


SHARE
ARTICLE IMPACT
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top