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ABSTRACT Understanding how seafood will be influenced by coming environmental changes such as ocean acidification is

a research priority. One major gap in knowledge relates to the fact that many experiments are not considering relevant end points

related directly to production (e.g., size, survival) and product quality (e.g., sensory quality) that can have important repercussions

for consumers and the seafood market. The aim of this experiment was to compare the survival and sensory quality of the adult

northern shrimp (Pandalus borealis) exposed for 3 wk to a temperature at the extreme of its thermal tolerance (11�C) and 2 pH

treatments: pH 8.0 (the current average pH at the sampling site) and pH 7.5 (which is out of the current natural variability and

relevant to near-future ocean acidification). Results show that decreased pH increased mortality significantly, by 63%. Sensory

quality was assessed through semiqualitative scoring by a panel of 30 local connoisseurs. They were asked to rate 4 shrimp (2 from

each pH treatment) for 3 parameters: appearance, texture and taste. Decreased pH reduced the score significantly for appearance

and taste, but not texture. As a consequence, shrimpmaintained in pH 8.0 had a 3.4 times increased probability to be scored as the

best shrimp on the plate, whereas shrimp from the pH 7.5 treatment had a 2.6 times more chance to be scored as the least desirable

shrimp on the plate. These results help to prove the concept that ocean acidification can modulate sensory quality of the northern

shrimp P. borealis. More research is now needed to evaluate impacts on other seafood species, socioeconomic consequences, and

potential options.

KEY WORDS: pH, acidification, taste, texture, appearance, northern shrimp, Pandalus borealis

INTRODUCTION

The ocean contributes significantly to society. Dependence on

marine protein is expected to continue to rise with the increasing
human population; world capture fisheries and aquaculture are
estimated to provide food to 4.3 billion people with at least 15%

of their animal protein. During the past 30 y, world food
production by aquaculture has expanded 12-fold—nearly half
of the human seafood production. Understanding how seafood

production and quality will be influenced by coming environmen-
tal changes is critical. The economic consequences of a collapsing
fishery and aquaculture industry would be dire indeed.

Ocean acidification is a rapid and unprecedented increase in

ocean acidity. Intensive fossil-fuel burning and deforestation
during the past 2 centuries has increased atmospheric CO2 to
almost 40% above preindustrial values. The global ocean

currently absorbs around 30% of released anthropogenic CO2,
fundamentally altering ocean chemistry by acidifying seawater. It
is predicted that average oceanic pHwill decrease by 0.4 pHunits

by 2100, a rate of change 100 times faster than anything seen in
the past hundreds of millennia (Caldeira & Wickett 2003).
Together with other stressors such as global warming, it chal-
lenges marine species and ecosystems (Dupont & Pörtner 2013,

Wittmann & Pörtner 2013). Despite a growing body of evidence
demonstrating that ocean acidification is a major threat for
seafood security (availability of sustainable and good-quality

seafood), and recommendations that species and end points with
direct economic importance should be prioritized (Hilmi et al.

2014), consequences for seafood remain unclear.One exception is
the affect of ocean acidification on oyster production in hatch-
eries located on the northern West Coast of the United States—

aUS$270 million industry. A significant decline in the survival of
oyster larvae since 2005 appeared to be connected to nearshore
ocean acidification (Barton et al. 2012).

One major gap in knowledge relates to the fact that many

experiments are not considering relevant end points. To make
any projection on future effects of ocean acidification and other
environmental challenges on seafood, it is critical to consider

parameters that are related directly to production (e.g., survival)
and quality (e.g., sensory quality). The aim of this experiment
was to test on the northern shrimp (Pandalus borealis) the impact

on survival and sensory quality of 3 wk of exposure to
a temperature at the extreme of its thermal tolerance (11�C)
and pH conditions within (pH 8.0) and outside (pH 7.5) of the

current range of pH variability.
The northern shrimp is a keystone species in the marine

ecosystem of the continental shelves in theNorth Atlantic and is
an important prey for demersal fish species, most notably cod. It

also has substantial economic (e.g., V100 million for Norway
alone [Søvik & Thangstad 2013]) as well as high cultural value
as seafood for the public. Shrimp are famous for their sensory

appeal, including their appearance, texture, and flavor.
The future of shrimp as a harvested resource is unsure

(Wieland et al. 2012). Shrimp landings have declined in the

northwest Atlantic. The decline may be caused by recruitment
failure caused by mismatch between timing of phytoplankton
bloom and hatching of larvae (Koeller et al. 2009), as well as by
increased predator abundance. Previous work on Pandalus

borealis demonstrated that the species is relatively tolerant to
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ocean acidification (Bechmann et al. 2011, Arnberg et al. 2013,
Hammer & Pedersen 2013). Decreased pH (DpH ¼ 0.5) induced

a delay in development but had no impact on mortality
(Bechmann et al. 2010, Arnberg et al. 2013). As adults, the
northern shrimp was able to compensate for extreme acidifica-
tion (DpH¼ 1.2) for up to 16 days and without any documented

consequence for mortality (Hammer & Pedersen 2013). All these
studies were performed at temperatures ranging from 5–9.5�C.
The shrimpP. borealis is found primarily at low temperatures (0–

5�C), but it shows a wide temperature range as an adult and can
live at temperatures as warm as 12�C, which is experienced in the
North Sea (Allen 1959, Bergstrom 2000). Organisms specialize

within certain temperature ranges and are sensitive to extremes
(Magozzi & Calosi 2014). It can be predicted that exposure to
temperatures at the limit of thermal tolerance will enhance
sensitivity to stress, including ocean acidification (Pörtner &

Farrell 2008, Dupont & Pörtner 2013). It is also well established
that environmental factors causing stress can affect the quality of
meat. For example, stressed fish can have a metallic aftertaste

(Borderı́as & Sánchez-Alonso 2011). As a consequence, our
hypothesis was that ocean acidification will increase shrimp
stress level with negative consequences for their survival and

sensory eating quality.

MATERIALS AND METHODS

Animal Collection

Adult females of the northern shrimp (Pandalus borealis)
were sampled on April 24 and 25, and May 13 from central

Gullmarsfjord (58�20#26.1$ N, 11�33#31.7$ E) and close to
Brofjorden (58�18#12.4$ N, 11�17#59.7$ E) using an otter trawl
at 85–110 m for 30–60 min. As soon as they were onboard, the

shrimp were transferred to chilled, aerated tanks for trans-
portation to minimize exposure to thermal fluctuations. At The
Sven Lovén Center for Marine Sciences–Kristineberg, they

were kept in basins with flowing deep-sea water (temperature,
8�C; salinity, 33) until the beginning of the experiment (June 11)
and were fed ad libitum on chopped herring (Clupea harengus),
blue mussel (Mytilus edulis), Artemia nauplii, andMarine Flake

(New Era, Thorne, UK). Residual food was removed regularly
to avoid contamination.

Experimental Design and Seawater Chemistry

Shrimp were maintained in 4 3 100-L basins (2 replicated
basins per pH treatment; 42–57 shrimp per basin) with natural

flowing seawater and a replacement of 1 L/min. They were kept

at 11�C, a salinity of 33, and fed ad libitumwith chopped herring
every fourth day. The number of living shrimp was noted every

fourth day, and dead individuals were removed. pH was
maintained in each experimental basin using a computerized
feedback system (AquaMedic) that regulated pH by adding
pure gaseous CO2 directly into the seawater. pH was measured

twice a week on the total scale after calibration using TRIS
(Tris/HCl) and AMP (2-aminopyridine/HCl) buffer solutions
(provided by Unité d�Océanographie Chimique, Université de

Liège, Belgium), and was used to adjust pH system settings.
Total alkalinity was assessed once a week on filtered samples
(0.2 mm) by titration (TitroLineAlpha Plus, SI Analytics). pCO2

was calculated from total pH and total alkalinity using
CO2SYS (Lewis & Wallace 1998), with dissociation constants
from Mehrbach et al. (1973) refitted by Dickson and Millero
(1987). Two nominal pH treatments were compared: (1) pH 8.0,

the current average pH; and (2) pH 7.5, outside of the current
range of pH variability and a relevant scenario for near-future
ocean acidification (Dorey et al. 2013). pH and pCO2 were

significantly different between treatments, with no significant
difference between the 2 replicates (Table 1).

Sensory Evaluation

After 3 wk of exposure, shrimp were sampled and prepared
for the tasting assessment. More than 30 shrimp were collected

from each basin and prepared under the supervision of a pro-
fessional chef (Kirsten Johannsen). Shrimp from each basin
were cooked by immersion for 3 min in 2 L boiling water made
from the same stock of surface seawater with 60 g of sea salt/L

(per local industry standard). Shrimp were then rinsed in cold
surface seawater and cooled to room temperature for 1 h.
Thirty plates were prepared with shrimp from the 4 basins

assigned randomly to 4 different positions on each plate (1–4)
so tasters could not influence each other. Shrimp length varied
between 8.6 cm and 13.9 cm and were selected visually to

minimize size difference within each plate (maximum size
variation, 11.6%).

A panel of 30 local voluntary connoisseurs was gathered at

The Sven Lovén Center for Marine Sciences–Kristineberg (sex
ratio, 1:1; age, 42 ± 2 y old; age range, 24–56 y). All of them
confirmed liking shrimp and eat shrimp 1.76 ± 0.21 times
a month (between 4 times a month and 4 times a year). The

sensory evaluation was blinded, and tasters were not informed
of the design of the experiment. Each taster received a plate and
was asked to score the 4 shrimp (range, 1 [bad]–5 [excellent])

based on 3 criteria: appearance, texture, and taste. They were

TABLE 1.

Seawater chemistry in the 2 pH treatments (measured pHT and calculated pCO2 from pHT and AT$ 2,260 % 56 mmol/kg SW).

Nominal pH ANOVA 2

8.0 7.5 Model pH treatment Replicate

pHT 7.99 ± 0.01 7.55 ± 0.01 F3,79 ¼ 3484 F ¼ 10,452 F ¼ 0.24

P < 0.0001 P < 0.0001 P ¼ 0.78

pCO2 (matm) 459 ± 5 1,368 ± 7 F3,79 ¼ 3864 F ¼ 10,902 F ¼ 0.20

P < 0.0001 P < 0.0001 P ¼ 0.82

AT, total alkalinity; pHT, total pH.
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also asked if they would be willing to pay more for better tasting
shrimp.

Statistical Analyses

Relative mortality rate expressed in percent per day was
calculated for each replicate and pH treatment as the coefficient

of the significant linear relationship between relative density
(percent) and time (day). Differences between treatments and
replicates were tested using an analysis of covariance model.

Analysis of variance 2 models were used to test differences
between pH treatments and replicates for the sensory evalua-
tion parameters (appearance, texture, taste). These parameters

were not based on a standardized scale. As a consequence,
differences in scoring between tasters can be expected. To
account for these differences, shrimp on every plate were ranked
based on the sum of scores for appearance, texture, and taste

between 1 point (best shrimp, highest score) and 4 points (worst
shrimp, lowest score). For this ranking, difference between pH
treatments and replicates were tested using chi-square statistics.

All statistical analyses were performed using STAT software
(SAS Institute). The normality of data distributions was
confirmed with a Shapiro-Wilk test, and the homoscedasticity

was tested using the Bartlett test. Each mean value is expressed
as mean ± SEM. The significance level applied was 5%.

RESULTS

Relative mortality rate was, on average, 2.05 ± 0.23%/day at
pH 7.5 and 1.27 ± 0.24%/day at pH 8.0, which was statistically
significant (analysis of covariancemodel: F1,15¼ 16.9,P < 0.0001;

pH: F ¼ 5.32, P ¼ 0.042). There were no significant differences
between replicates (F ¼ 0.08, P ¼ 0.79) or interactions between
pH and replicates (F ¼ 0.01, P ¼ 0.97).

On average, shrimp from the pH-8.0 treatment had signif-
icantly greater scores for appearance and taste compared with
shrimp from the pH-7.5 treatment, with no significant differ-

ences between replicates or interactions, or between replicates
and pH treatments. No significant difference was observed for
texture (Table 2, Fig. 1).

Significant differences were observed between pH treatments
for the ranking of the shrimp on each plate (chi-square¼ 25.12,
P < 0.0001), with no differences between replicates within each
tested pH (pH 8.1: chi-square ¼ 6.33, P ¼ 0.10; pH 7.5: chi-

square ¼ 4.71, P ¼ 0.19). Shrimp from the pH-8.0 treatment
had 3.4 times more chance to be scored as the best shrimp of the
plate (rank 1), whereas the shrimp from the pH-7.5 treatment

had 2.6 times more chance to be scored as the least desirable
shrimp on the plate (rank 4; Fig. 2).

All but 1 of the 30 voluntary tasters claimed they would be

willing to pay more for better quality shrimp.

DISCUSSION

Our results demonstrate that a 3-wk exposure to decreased pH
related to ocean acidification (DpH¼ 0.5) can lead to a 1.6 times

increase in adult shrimp mortality. This is somewhat in contrast
to the conclusions of Hammer and Pedersen (2013), which
showed tolerance toward extreme acidosis (DpH ¼ 1.2) in the

same species. This could be attributed in part to difference in
sensitivity between populations (Sunday et al. 2014). Another
difference between the 2 studies is the temperature used.

Hammer and Pedersen (2013) conducted their experiment at an
optimal temperature (7�C), whereas we used a temperature at the
extreme of the thermal tolerance of the shrimp (11�C). Response
to ocean acidification can be highly dependent on thermal

conditions. All organisms live within a limited range of body
temperatures as a result of optimized structural and kinetic
coordination of molecular, cellular, and systemic processes, and

functional constraints result at temperature extremes (Pörtner
& Farrell 2008). It is hypothesized that additional stressors such
as ocean acidification have the potential to narrow these

thermal windows. This theoretical framework highlights the
fact that response to ocean acidification can be highly de-
pendent on thermal conditions. For example, temperature

modulated the impact of decreasing pH on sea urchin larvae,
leading to a positive effect of low pH at the lowest temperature,
a neutral effect at optimal temperature, and a negative effect at
high temperature (Gianguzza et al. 2014). It is then critical to

consider a range of temperatures that considers current tem-
peratures and future environmental variability in any experi-
ment aiming at studying the effect of ocean acidification.

The exposure to decreased pH also affected the sensory
quality of the exposed shrimp negatively, with a significantly
lower score for appearance and taste. This led to a 3.4 times

increased probability to be scored as the best shrimp of the plate
for the ones cultured in pH 8.0, whereas the shrimp from the
pH-7.5 treatment had 2.6 times more chance to be scored as the

TABLE 2.

Statistical analyses of the sensory evaluation parameters using
an analysis of variance 2 model.

Model pH treatment Replicate pH 3 replicate

Appearance F3,119 ¼ 2.85 F ¼ 4.67 F ¼ 0.11 F ¼ 0.72

P ¼ 0.042 P ¼ 0.03 P ¼ 0.11 P ¼ 0.40

Texture F3,119 ¼ 1.63 — — —

P ¼ 0.19

Taste F3,119 ¼ 6.08 F ¼ 17.05 F ¼ 0.91 F ¼ 0.28

P ¼ 0.0007 P < 0.0001 P ¼ 0.34 P ¼ 0.60

Figure 1. Average scores of the 3 sensory evaluation parameters (appear-

ance, texture, and taste) in the 2 pH treatments.
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worst shrimp on the plate. These results should be considered as

a proof of concept that ocean acidification can have an impact
on seafood sensory quality that can be detected by local
connoisseurs, rather than make any predictions for future

shrimp quality. First, our experimental design is only consid-
ered short-term exposure (3 wk) and simplistic scenarios (2
stable pH treatments). More realistic perturbation experiments
should consider longer exposure time (ideally, across life history

stages and through multiple generations); take into account
natural variability in pH and other relevant local environmental
parameters, including food quality and quantity; and allow for

adaptation, acclimation, and so forth (e.g., Hilmi et al. 2013,
Gaylor et al. 2014, Sunday et al. 2014). Other seafood species
should also be considered, because species- and phyla-specific

sensitivities have been shown to be extremely different (Wittman
& Pörtner 2013). Second, sensory quality is relative to consumer
preference, and this parameter can vary among regions and

evolve through time. Last, other assessment methods (e.g.,

trained panelists, electronic nose, quantitative descriptive analy-
sis [e.g., Mejlholm et al. 2005, Zeng et al. 2005] for Pandalus

borealis) and end points (e.g., stress markets, lipid content)
should be considered. Research should also be oriented toward
solutions. For example, isolation of resilient seafood strains to
ocean acidification would allow preparing aquaculture for

changes to come. More work is needed to evaluate the impact
of ocean acidification on seafood sensory quality and potential
economic consequences. For example, taste is one of the key

factors influencing consumer behavior (Shyam 2013). This is
consistent with the 97% of our panel list willingness to pay more
for better quality shrimp.

The fact that ocean acidification can have a detectable
impact on shrimp sensory quality can be a unique opportunity
to communicate about global changes effectively. In Scandi-
navian countries, the Pandalus is extremely popular and an

integral part of local folklore and culture. It is then an ideal
model to attract citizen�s interest (Can you imagine Scandi-
navia without a shrimp sandwich?, Can you taste climate

change?), to initiate the discussion about future threats on
their favorite seafood, and to engage them on climate issues
(e.g., through reduction of CO2 emissions) and the broader

marine biodiversity crisis we may be facing.
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