Translator Disclaimer
1 December 2006 Non-parametric habitat models with automatic interactions
Author Affiliations +
Abstract
Questions Can a statistical model be designed to represent more directly the nature of organismal response to multiple interacting factors? Can multiplicative kernel smoothers be used for this purpose? What advantages does this approach have over more traditional habitat modelling methods?Methods: Non-parametric multiplicative regression (NPMR) was developed from the premises that: the response variable has a minimum of zero and a physiologically-determined maximum, species respond simultaneously to multiple ecological factors, the response to any one factor is conditioned by the values of other factors, and that if any of the factors is intolerable then the response is zero. Key features of NPMR are interactive effects of predictors, no need to specify an overall model form in advance, and built-in controls on overfitting. The effectiveness of the method is demonstrated with simulated and real data sets.Results: Empirical and theoretical relationships of species response to multiple interacting predictors can be represented effectively by multiplicative kernel smoothers. NPMR allows us to abandon simplistic assumptions about overall model form, while embracing the ecological truism that habitat factors interact.
and Bruce McCune "Non-parametric habitat models with automatic interactions," Journal of Vegetation Science 17(6), (1 December 2006). https://doi.org/10.1658/1100-9233(2006)17[819:NHMWAI]2.0.CO;2
Received: 27 September 2005; Accepted: 25 July 2006; Published: 1 December 2006
JOURNAL ARTICLE
12 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
ARTICLE IMPACT
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top