BLOOD AND URINARY VALUES IN THE GRAY SQUIRREL

Authors: G. L. HOFF, L. E. McELDOWNY, W. J. BIGLER, L. J. KUHNS, and J. A. TOMAS
Source: Journal of Wildlife Diseases, 12(3) : 349-352
Published By: Wildlife Disease Association
URL: https://doi.org/10.7589/0090-3558-12.3.349
BLOOD AND URINARY VALUES IN THE GRAY SQUIRREL

G. L. HOFF, L. E. McELDOWNY, W. J. BIGLER, L. J. KUHNS and J. A. TOMAS
Bureaus of Preventable Diseases and Laboratories, Florida Department of Health and
Rehabilitative Services, Division of Health, P.O. Box 210, Jacksonville, Florida 32201 and
Florida Department of Agriculture and Consumer Services, Division of Animal Industry
Diagnostic Laboratory, P.O. Box 460, Kissimmee, Florida 32741, USA

Abstract: Uric acid, blood urea nitrogen, glucose, total serum protein, cholesterol,
triglyceride, calcium, magnesium, phosphorus, and chloride concentrations in the
blood plus pH, bilirubin, ketone, blood, protein and glucose levels in the urine were
determined for gray squirrels captured in Jacksonville, Florida. Significant differences
were not noted for any of these values when compared by the age or sex of the ani-
mals, by breeding or lactation status, by month of capture, or by habitat type. De-
pressed blood glucose and elevated blood urea nitrogen levels were observed in
squirrels with shock syndrome.

INTRODUCTION
Gray squirrels (Sciurus carolinensis) are an integral part of the urban wildlife
fauna in the eastern half of the United States, in addition to being a major small
game species in many areas. They have been introduced into portions of western
North America and to other continents. Their potential for transmission of disease
to man and his pets has been largely ignored. Consequently, the Veterinary
Public Health Section of the Florida Division of Health (FDH) initiated an
investigation into the health of and the
diseases carried by urban gray squirrels.
As part of this multi-faceted study, base-
line information on selected values of
blood and urine were obtained through
collaborative efforts with the FDH Bu-
reau of Laboratories and the Florida
Division of Animal Industry Diagnostic
Laboratory. Kissimmee. These results
are presented in this report.

MATERIALS AND METHODS
Squirrels were captured alive in cage-
type traps baited with peanut butter and
pecans. The animals were from the city
of Jacksonville, Florida and were trapped
each month of 1974. Thirty-six collection
sites were employed, with a minimum of
five squirrels captured per site. Three
sites per month were sampled.

Each squirrel was immobilized with
ketamine hydrochloride and exsanguina-
ted via cardiac puncture, yielding 8 to 10
cc of blood. One aliquot of blood was
placed in sodium fluoride, one in an
anticoagulant for hematological studies,
and the remainder was allowed to clot
for two hrs. The serum was aliquoted
to three portions: 1) serology, 2) cho-
lesterol, triglyceride and total protein con-
centrations, and 3) calcium, magnesium,
phosphorus and chloride concentrations.
Aliquots 1 and 3 were frozen at —20°C
until tested. Blood in sodium fluoride and
serum aliquot 2 were immediately de-
livered to the FDH clinical chemistry
laboratory.

In addition, urine was collected from
the bladders of squirrels with a needle
and syringe.

Blood, in sodium fluoride, was ana-
yzed by semiautomated techniques for
blood urea nitrogen (BUN), uric acid,
and glucose concentrations.14-15 Serum
cholesterol and triglyceride concentra-

1) Reprint requests: Veterinary Public Health Section, Division of Health, Department of Health
and Rehabilitative Services, State of Florida, P. O. Box 210, Jacksonville 32201 USA.
were also determined by semiautomated techniques. Total serum protein concentrations were determined by the biuret reaction, while the phosphorus and chloride concentrations were measured colorimetrically. The urinary samples were tested for pH, bilirubin, ketones, blood, protein, and glucose, using chemical reagent strips.

RESULTS AND DISCUSSION

A total of 287 squirrels were captured. There were 125 males and 162 females. Squirrels ranged from less than 1 to 4 years of age, with 80% being less than 2 years old.

TABLE 1. Blood chemical values for Sciurus c. carolinensis.

<table>
<thead>
<tr>
<th>Determination</th>
<th>No. of squirrels</th>
<th>Mean ± standard error of the mean</th>
<th>Minimum and maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood glucose (mg/100 ml)</td>
<td>180</td>
<td>139±2.7</td>
<td>25-255</td>
</tr>
<tr>
<td>Blood urea nitrogen (mg/100 ml)</td>
<td>180</td>
<td>20±0.7</td>
<td>4-70</td>
</tr>
<tr>
<td>Blood uric acid (mg/100 ml)</td>
<td>180</td>
<td>1.0±0.0</td>
<td>0.5-2.3</td>
</tr>
<tr>
<td>Serum cholesterol (mg/100 ml)</td>
<td>180</td>
<td>248±4.3</td>
<td>124-448</td>
</tr>
<tr>
<td>Serum triglycerides (mg/100 ml)</td>
<td>180</td>
<td>125±6.2</td>
<td>20-496</td>
</tr>
<tr>
<td>Serum calcium (mg/100 ml)</td>
<td>107</td>
<td>9.0±0.1</td>
<td>7.0-14.5</td>
</tr>
<tr>
<td>Serum magnesium (mg/100 ml)</td>
<td>107</td>
<td>2.5±0.1</td>
<td>1.3-5.3</td>
</tr>
<tr>
<td>Serum phosphorus (mg/100 ml)</td>
<td>107</td>
<td>7.3±0.2</td>
<td>3.1-21.8</td>
</tr>
<tr>
<td>Serum chloride (meq/L)</td>
<td>107</td>
<td>115±1.0</td>
<td>80-155</td>
</tr>
<tr>
<td>Serum total protein (gm/100 ml)</td>
<td>71</td>
<td>5.5±0.3</td>
<td>3.7-6.6</td>
</tr>
</tbody>
</table>

Serological results and hematological values for the squirrels have been reported elsewhere. Blood and serum chemistry values are presented in Table 1. BUN, blood glucose, blood uric acid, serum cholesterol and serum triglyceride concentrations were determined for five squirrels from each of the 36 collection sites. Serum samples from the remaining 107 squirrels were measured for calcium, magnesium, phosphorus and chloride concentrations. Total serum protein concentrations were determined for only 71 squirrels. There were no significant differences (t test, P < 0.05) for any of these values when compared by age or sex, by breeding or lactation status, by month of capture, or by habitat type.

There are few data with which to compare the findings of this study. Twelve
gray squirrels shot in Virginia averaged 110 mg/100 ml for plasma glucose and 146 mg/100 ml for plasma cholesterol, while captive animals averaged 110 mg for plasma glucose and 148 mg for plasma cholesterol. Squirrels in the present study had significantly higher mean plasma glucose and serum cholesterol concentrations than the Virginia squirrels.

Three squirrels developed shock syndrome within seven hrs of capture. The condition was characterized by muscular incoordination, inability to maintain orientation, convulsions, unconsciousness and rectal temperatures approaching 32°C (normal rectal temperature is 36.4°C).

The mean plasma glucose level was 20 mg/100 ml with a mean BUN of 58 mg/100 ml. Changes were not noted in other parameters.

Urine samples were obtained from 160 squirrels. Mean pH was 6.4 (range 6-8). Mean protein concentration was 131 mg/100 ml, although 79% of the squirrels had values between trace amounts and 100 mg/100 ml. Ketonuria was observed in 47 animals with almost all reactions being minimal. Only 2 squirrels had evidence of glucosuria and 1 of bilirubinuria. Blood was not observed in the urine.

Acknowledgments
Technical assistance was provided by Mr. Donald Tailman, Mr. Dann Brown and Mr. Thomas Doyle.

LITERATURE CITED


Received for publication 17 November 1975