A Synopsis of the Genus Hoffmannseggia (Leguminosae)

Authors: Simpson, Beryl B., and Ulibarri, Emilio A.

Source: Lundellia, 2006(9) : 7-33

Published By: The Plant Resources Center, The University of Texas at Austin

URL: https://doi.org/10.25224/1097-993X-9.1.7
A Synopsis of the Genus Hoffmannseggia (Leguminosae)

Beryl B. Simpson and Emilio A. Ulibarri

Integrative Biology and Plant Resources Center, The University of Texas, Austin, Texas 78712 USA
Instituto de Botánica Darwinion, IBODA-CONICET, C.C. 22 (Labardén 200), B1642HYD San Isidro, Argentina

Abstract: The genus Hoffmannseggia Cav., now recognized as a monophyletic group distinct from Caesalpinia and Pomaria, consists of 22 species and is amphitropically distributed between North and South America, with 11 species in arid and semi-arid areas of the southwestern USA and adjacent Mexico, and 12 species in southern South America. Recent publications have provided a revision of Hoffmannseggia for North America, a resolved phylogeny, and an analysis of the biogeography of the genus, but there is to date no treatment of all of the taxa. Here we present a key to the genus and its closest relatives, a key to all of the recognized taxa, typification, distributional data for each species, selected specimens examined for the South American taxa, and notes where appropriate.

Keywords: Caesalpinia, Caesalpinieae, Hoffmannseggia, Fabaceae, Leguminosae.

Recent studies (Simpson and Miao, 1997; Lewis, 1998; Simpson et al., 2003) have shown that the genus Caesalpinia L. sensu Polhill (1994; Polhill and Vidal, 1981) is paraphyletic with respect to many genera in the Caesalpinia group. Among the genera now known to be distinct from Caesalpinia, although often confused with it in the past (Simpson et al., 2004), is Hoffmannseggia. Hoffmannseggia is considered here to consist of 22 species, amphitropically distributed with ten species restricted to North America, eleven species endemic to South America, and one widespread species, H. glauca (Ortega) Eifert, that occurs on both continents (Simpson et al., 2005). In 1979, Ulibarri revised the eight Argentine species of the genus, and in 1996 he provided a synopsis of both Caesalpinia and Hoffmannseggia for all of South America, but in many cases synonymies were incomplete. Recent molecular phylogenetic work (Simpson et
al., 2004) has indicated that one species (Hoffmannseggia pumilio (Griseb.) B. B. Simpson) formerly treated as a Caesalpinia belongs in Hoffmannseggia. In 1999 and 2000, Simpson revised the North America species of the genus. In view of the fact that the taxonomy of the genus has now stabilized, it seems appropriate to provide a synopsis of the entire genus. Consequently, we provide here a key to all of the taxa in the genus we currently recognize, typification, distributional data, notes, comments on possible hybridizations, and a list that provides the disposition of names that have figured in the taxonomic history of Hoffmannseggia.

Extensive lists of specimens examined were given for the North American species by Simpson (1999) in an earlier issue of this journal. Consequently we provide here representative specimens for only the South American taxa.

Hoffmannseggia can be distinguished from Zuccagnia Cav. and Balsamocarpon Clos, its two sister genera, and from Caesalpinia and Pomaria Cav., with which it is most commonly confused, by the characters in the following key.

1. Small shrubs or perennial herbs, sometimes woody at the base; plants without spines; sepals persisting in fruit or very tardily and jaggedly deciduous (H. microphylla and H. peninsularis); pedicels never jointed; leaves without resin-secreting glands in depressions; rachises, and sepals with simple trichomes, multicellular linear glandular trichomes, or both; fruits compressed longitudinally, straight, arcuate, lunate, or obturrulate in outline; valves glabrous or with simple trichomes and/or glandular trichomes, not resin-coated

Hoffmannseggia

1. Trees, woody shrubs, suffrutescent perennial herbs, or vines; plants often with spines; sepals caducous leaving a ring at the base of the fruit or, if persisting, leaves with resin-secreting glands in depressions on both leaf surfaces; pedicels jointed or not; rachises and sepals with simple trichomes or peltate glandular trichomes; fruits elongate ("bean-like") compressed longitudinally, or cylindrical, or ovoid; valves glabrous or simply vestitured with non-glandular or glandular trichomes, sometimes with complex branching trichomes, or resin-covered (Balsamocarpon), or adorned with red-purple setae (Zuccagnia).

2. Fruits cylindrical, covered with yellow-brown resin when mature; plants extremely spiny; young leaves borne on long shoots, adult leaves on brachyblasts (short shoots) Balsamocarpon

2. Fruits flattened, variously pubescent or spiny, or ovoid with red-purple setae on the valves; plants spineless or with scattered spines: leaves borne on long shoots.

3. Leaves bipinnate; fruits elongate, compressed longitudinally; valves variously vestitured, glabrous, or spiny; leaves variably vestitured but not resinous.

4. Small shrubs or suffrutescent perennial herbs; gynoecium and anthers nestled in an enlarged lowermost sepal; stigma lateral; fruits usually with black (when dry) punctate glandular trichomes, always with complex-branching trichomes Pomaria

4. Trees, vines, or shrubs; gynoecium and anthers usually decumbent but not nestled in the lowermost sepal; stigma terminal or subterminal; fruits variously vestitured, sometimes with black glandular punctate trichomes and occasionally with complex branching trichomes Caesalpinia s. l.

Hoffmannseggia thus consists of small, non-spiny perennial herbs or subshrubs. Compared to other members of the Caesalpinia group (Polhill, 1994), the flowers are relatively regular and lack the cucullate sepal found in many species of Caesalpinia. While Zuccagnia and Balsamocarpon, both monotypic genera of southern South America, form a clade sister to Hoffmannseggia, morphologically they are very distinct. Zuccagnia is a large shrub growing in the Monte Desert of Argentina that has bright, shiny leaves dotted with sunken resin-secreting glands and fruits that appear as small (5 mm without the setae), flattened “balls” covered with relatively stiff red-purple se-
Balsamocarpus is a small shrub of the deserts of coastal Chile that has mature leaves borne on short shoots and cylindrical fruits ca. 5 cm long completely encased in resin when mature.

While not the closest relatives of Hoffmannseggia, some species of Pomaria and Caesalpinia are morphologically quite similar to Hoffmannseggia species and historically caused confusion about generic boundaries. In particular, a small suffrutescent habit led to the various erroneous placements of species of Caesalpinia and Pomaria in Hoffmannseggia. The most conspicuous difference between Hoffmannseggia and these latter two genera is the presence (by persistence) of sepals in fruit. Only H. microphylla and H. peninsularis occasionally lack some or all of the sepals on mature fruits but in these cases, there is a jagged tear rather than the smooth ring left on species of Caesalpinia or Pomaria after shedding of the sepals.

A phylogenetic analysis of Hoffmannseggia (Simpson et al., 2003) showed that there are two major clades in the genus (Fig. 1). All of the species in one of these clades are suffrutescent whereas those in the other are herbaceous. The suffrutescent clade has as defining characters its subshrubby habit, flowers born on branching stems, and fruits that dehisce by the simple opening and spreading of the valves with the valves sometimes twisting around themselves after dehiscing. Within this clade, species in the subclade of H. pumilio, H. drummondii, and H. viscosa share the trait of glandular trichomes on the margins of the leaves. Its sister subclade of H. intricata, H. microphylla, and H. peninsularis has leaf margins that are glabrous or with only non-glandular trichomes.

In contrast most species of the herbaceous clade have essentially indehiscent fruits (Hoffmannseggia oxycarpa, H. arequipensis, and H. miranda being the exceptions). All members, except Hoffmannseggia arequipensis and H. miranda, have unbranched flowering stalks and all species except H. eremophila have flowering stalks that are longer than the leaves. Species of the subclade containing all the North American herbaceous species (H. drepanocarpa to H. humilis in Fig. 1) share the characters of glabrous petal margins and glabrous dorsal petal surfaces (i.e., lacking glandular trichomes). The South American clade of Hoffmannseggia miranda and H. prostrata have long multicellular trichomes on the claws of the petals. Finally, although in different clades, H. erecta, H. eremophila, H. doellii, H. minor, H. trifoliata, and H. yaviensis all have fruits that curve downward. In general, the North American herbaceous species are easier to distinguish morphologically (using trichome and fruit characters) from one another than the high Andean herbaceous species (H. doellii, H. eremophila, H. minor, H. yaviensis). However, in terms of molecular sequence data, several of the North American species are quite similar (Fig. 1), perhaps reflecting a recent radiation.

Assessing biogeography in light of the recent well-supported molecular phylogeny (Simpson et al., 2005) has shown that there have been four dispersals from South America to North America (Fig. 1).

Artificial Key to the Species of Hoffmannseggia

1. Plants subshrubby with woody branches, at least basally; flowers borne on leafy branches; fruits lunate, arcuate, or unequally obtrullate, dehiscent by simple spreading of the valves, valves occasionally in-rolling after dehiscence.
2. Leaf margins with glandular trichomes.
3. Plants upright with distinctive woody branches, never sticky; fruits crescent-shaped, wide in the middle and pointed on the ends.
4. Branches gray (sometimes orange), robust; leaves (including petiole) less than 10 mm long (including the petiole); fruit valves with glandular trichomes .. 16. H. pumilio
4. Branches red or brown, thin; leaves (including petiole) 10–23 mm long; fruit valves glabrous 4. H. drummondii
Fig. 1. Phylogenetic hypothesis of *Hoffmannseggia* resulting from a Bayesian analysis of combined molecular sequence data from the internal transcribed spacer regions of nuclear ribosomal DNA (ITS), the chloroplast *trnL* intron, *trnL*-F spacer region, and *rbcL*. (Modified from Simpson et al., 2004). Taxa subtended by light lines are North American, those with black bars are South American showing that there have been four dispersals from South to North America. Note the natural occurrence of *H. glauca* on both continents. *Hoffmannseggia arequipensis*, not recognized in the study of Simpson et al (2004) would form a clade with *H. miranda*.

3. Plants spreading, often decumbent with branches woody at the base; stems and foliage often sticky; fruits with parallel margins and curved into an arc with a rounded tip 20. *H. viscosa*

2. Leaf margins eglandular.

5. Claws of petals with conspicuous long trichomes; flowers over 10 mm long; stipules fan-shaped with conspicuous stiff setae at the tips; fruit unequally obovulate, dehiscent with the valves twisting ... 12. *H. miranda*

5. Claws of petals glabrous; flowers less than 10 mm long; stipules linear-lanceolate to ovate and acute; fruits crescent-shaped or with parallel sides and arcuate, dehiscent with the valves simply spreading apart.
6. Plants highly branched, sometimes divaricately so; stems leafy; leaves with the terminal pinna shorter than, equal to, or only slightly longer than the lateral pinnae.
7. Plants nearly prostrate with branches almost zigzag but not spine-tipped; leaflets 3–6 pair; young stems and leaf rachises light red-brown; sepals always persistent in fruit; legume 15 mm long, 4–5 mm wide 14. *H. peninsularis*
8. Flowers with conspicuous glandular trichomes greater than 0.5 mm in length on the claws of the petals; flag petal with conspicuous glandular trichomes on the dorsal surface.
9. Stem bases woody with stems often branching basally; flowers yellow orange, with purple (occasionally yellow) filiform trichomes on the petal claws 0.5–3.0 mm long; fruits elongate, obturate in outline, dehiscent with the valves twisting; valves glabrous to tomentose
10. Leaflets subelliptical, obovate, or subfalcate in outline, without conspicuous veins, soft, (4)6–9(10) pair per pinna 1. *H. arequipensis*
11. Fruits with margins not parallel and unequally obtrullate in outline, dehiscent with the valves twisting around themselves after dehiscence; valves densely covered with black-tipped glandular trichomes; tip of fruit rounded; roots forming tuber-like masses 6. *H. oxycarpa* subsp. *arida*
12. Fruits with parallel margins, arcuate, indehiscent; valves lightly tomentose with a few scattered glandular trichomes; tip of fruit rounded; roots forming tuber-like masses 7. *H. glauca*
13. Fruits curled into an S-shape or complete circle; valves glabrous; flowers nodding after blooming. [Note: the two following species hybridize and intermediate specimens occur.]
14. Leaves with 2–6 pairs of pinnae; leaflet apex rounded or slightly acute 5. *H. erecta*
15. Fruits straight; valves strigose to lanose; flowers remaining upright after blooming 15. *H. prostrata*
16. Flowers 7–20 mm long; fruits obturate, rectangular, oblong, or almost orbicular in outline. 18. Sepals and pedicels with conspicuous multicellular glandular trichomes.
17. Fruits straight, 8–19 mm long, beige with red edges; seeds 2–4 per fruit 18. *H. tenella*
18. Fruits curled into a pronounced arc, 23–40 mm long (total length), brown or red; seeds 6–11 per fruit 3. *H. drepanocarpa*
19. Flowers without glandular trichomes (or only a few) on the petal claws; flag petal with or without glandular trichomes on the dorsal surface.
20. Flowers without glandular trichomes on the dorsal surface of the flag petal; roots never forming tuber-like growths; fruits straight and borne upright (except *H. oxycarpa* subsp. *oxycarpa*), or arcuate and curled upward, or almost orbicular, always with the placental margin uppermost.
21. Flowers 6–10 mm long; fruits with parallel margins and either straight or curved into a pronounced arc.
22. Fruits straight, 8–19 mm long, beige with red edges; seeds 2–4 per fruit 18. *H. tenella*
23. Fruits curled into a pronounced arc, 23–40 mm long (total length), brown or red; seeds 6–11 per fruit 3. *H. drepanocarpa*
24. Flowers 7–20 mm long; fruits obturate, rectangular, oblong, or almost orbicular in outline.
25. Sepals and pedicels with conspicuous multicellular glandular trichomes.
26. Fruits rectangular in outline, reticulately veined, indehiscent; leaflets usually strigose or villous 8. *H. humilis*
27. Fruits unequally obturate, obscurely veined, dehiscent with the valves twisting after dehiscence; leaflets usually glabrous 13 a. *H. oxycarpa* subsp. *oxycarpa*
18. Sepals and pedicels pubescent, strigose, or tomentose, but lacking glandular trichomes.

20. Free portion of sepal 3–5 mm long; fruits oblong in outline, less than 10 mm wide ... 20. H. watsonii

15. Flowers with glandular trichomes on the dorsal side of the flag petal; roots often forming tuber-like growths; fruits straight or curled (sometimes into a complete circle or into an “S” shape) and curved downward with the placental margin facing downward.

21. Fruit straight or only slightly recurved, usually shorter than 3.5 cm; inflorescences with fewer than 8 flowers per inflorescence.

22. Plants lacking glandular trichomes on the sepals, pedicels, and fruit valves, occasionally present on the edges of the stipules; leaflets uniformly green.

23. Leaflet surfaces, primarily the dorsal, with sparse strigose trichomes; leaflet margins usually with a conspicuous dense row of very short, white, straight, setose trichomes; sepals with strigose trichomes; all petals with dense, often contrastingly colored glandular trichomes on the dorsal surfaces; fruits red; valves more or less glabrous; fruit margins glabrous ... 11. H. minor

24. Flowering stalks and pedicels villous with red-tipped or dark red glandular stalked trichomes; flowers red-tipped in bud; glandular trichomes on the dorsal petal surfaces obvious; fruit over 5 mm wide, usually curling into a semi-circle; valves of fruit pilose and glandular ... 2. H. doellii

25. Leaves with 2–6 pairs of pinnae; leaflet apex rounded or slightly acute 5. H. erecta

25. Leaves trifoliolate; leaflet apex acute to mucronate 19. H. trifoliata

SYNOPSIS OF THE SPECIES

There have been various spellings of Hoffmannseggia and many species were described as “Hoffmanseggia” or even “Hoffmannsegia.” The correct spelling by orthographic conservation is with “nn” and “gg” (as in the name of John C. Hoffmannsegg for whom the genus was named). Consequently, in the following nomenclature, we have used Hoffmannseggia regardless of the original spelling of the author.

Note that representative specimens are given only for the South American species. Extensive lists of specimens examined for the North American taxa and maps of all of their distributions were given in an earlier issue of this journal (Simpson, 1999).

DISTRIBUTION AND HABITAT: Restricted to various lomas on the west coast of southern Peru.

CHROMOSOME NUMBER: unknown.

ICONOGRAPHY: Ulibarri 1987, Fig. 1 a–f.

REPRESENTATIVE SPECIMENS EXAMINED:
PERU. AREQUIPA. Lomas de Atiquipa, 16-XI-1983 (fl, fr), E. Carrillo 1213 (SI); Chala-Camana, 8-XI-1947 (fl, fr), R. Ferreya 2528 (SI, USM); Lomas de Chaparri, cerca de Chala, 14-X- (fl), R. Ferreya 11986
This taxon has several morphological features that distinguish it from *Hoffmannseggia miranda*, notably, stipules with small teeth, comparatively small non-coriaceous leaves with prominent veins, and the color of the long trichomes on the claw that are purple in *H. miranda* and yellow in *H. arequipensis*. While we recognize this taxon here, it should be noted that molecular data of Simpson et al., 2004 (see their Fig. 2) clearly placed both specimens sampled within *H. miranda*. In that work (summarized here in Fig. 1) it was treated as conspecific with *H. miranda*.

DISTRIBUTION AND HABITAT: Chile at high elevations (2300–3500 m) in Tarapacá and Antofagasta.

CHROMOSOME NUMBER: unknown.

ICONOGRAPHY: Ulibarri, 1979, Fig. 5 a–6; Ulibarri, 1996, Fig. 8 F; Figs. 2A, 3A this article.

REPRESENTATIVE SPECIMENS EXAMINED:

CHILE. II Región. Antofagasta. Aiquina-Toconce, 19-XI-1967 (fl, fr), H. Martin 386 (LIL, SI); S. Pedro-Calama, 16-XII-1989 (fl, fr), Wickens 42/89 (K). El Loa. 10 km E. of Conchi, 10-II-2000 (fl, fr), B. B. Simpson 10-111-001 (TEX, SI); 3 km NW of Toconao, 12-II-2000 (fl), B. B. Simpson 12-II-00-1 (TEX, SI); 7 km of Socaire, 12-II-2000 (fl, fr), B. B. Simpson 12-II-00-2 (TEX, SI).

Hoffmannseggia doellii is an attractive species with its rosette of leaves from which multi-flowered inflorescences arise. The tips of the unopened flowers extending beyond the sepals are bright red. Freshly opened flowers are yellow with some red markings and older flowers fade to red. This species is often confused with *H. eremophila*, but that species has a shorter, less curved fruit, fewer than eight flowers per inflorescence and, usually, red-margined leaves. *Hoffmannseggia doellii* has long fruits that curve, sometimes almost into a circle, more than eight flowers per inflorescence, and uniformly green leaves.

In 1979, one of us (E.A.U.) described *Hoffmannseggia doellii* Phil. subsp. *argentina* Ulibarri from northwestern Argentina (Catamarca, La Rioja, and San Juan).

We are currently unsure how to treat this taxon until there is more material to be examined both morphologically and using molecular tools. Specimens assigned to this taxon (listed above) are conspicuously pilose and glandular. It is possible that this entity is actually closer to *H. eremophila* than to *H. doellii*, or a hybrid involving one or both of these species, or possibly a distinct species.

FIG. 2. Flowers of *Hoffmannseggia* species. A. *H. doellii* showing the small yellow glandular trichomes on the claws of the petals. ×4.5. B. *H. drepanocarpa* from west-central Texas with a very simple flower. ×13. C. *H. minor*, a ground-hugging high Andean species. ×3. D. *H. miranda* from the coast of Peru showing the extremely long dark-colored trichomes on the petal claws. ×3. E. *H. viscosa* from western Peru has very variably sized flowers. ×4. F. *H. yaviensis* from northern Argentina. ×1.9. Photos by J. L. Neff.
The problems of associating Wright's collection numbers with the numbers assigned to them by Asa Gray are discussed in Simpson (1999).

Larrea drepanocarpa (A. Gray) Britton, N. Amer. fl. 23 (5): 312. 1930.

Distribution and Habitat: Widely distributed in the grasslands of southwestern United States (Kansas and Colorado south to California and Texas) and in Mexico in the state of Chihuahua at 900–1200 m elevation (Isely, 1975, Map 74; Simpson, 1999, Fig. 2).

Chromosome Number: $2n = 24$ (Turner and Fearing, 1960).

Iconography: Fig. 2B this article.

While this species has the broadest distribution of any North American species except for _Hoffmannseggia glauca_, it is not weedy and does not occur in large stands. The most characteristic feature of the species is the fruit that is flattened, has parallel edges, and is curled into a semi-circle or an almost complete circle. The valves are shiny red-brown or brown.

4. _Hoffmannseggia drummondii_ Torr. & A. Gray, Fl. N. Amer. 1 (3): 393. 1840. **Type:** UNITED STATES. **Texas.** [1834], _T. Drummond s.n._ (HOLOTYPE: NY!; ISOTYPES: GH!, US!).

Distribution and Habitat: Confined to southern Texas, USA, and in eastern Tamaulipas, Mexico, growing at elevations below 700 m (Isely, 1975, Map 8; Simpson, 1999, Fig. 3).

Chromosome Number: Unknown.

Iconography: Simpson, 1999, Plate 1C.

Hoffmannseggia drummondii appears to be rare in the United States, possibly because of the destruction of habitat in the southern part of Texas. In its woody habit and fruit morphology it is similar to _H. pumilio_ of South America and molecular data have shown them to be sister taxa. The two differ, however, in robustness and habitat. Individuals of _Hoffmannseggia drummondii_ are small, open shrubs with flexible branches. Populations occur at sea level in sandy clay soils of southern Texas and northern Mexico, whereas shrubs of _H. pumilio_ are stout and stiff and grow in rocky soils at elevations between 1,800 and 4,000 m in the Andes of northern Argentina and southern Bolivia.

5. _Hoffmannseggia erecta_ Phil., Anales Mus. Nac., Santiago de Chile 84: 437. 1893. **Type:** ARGENTINA. **Mendoza.** Jan–Feb 1885, _L. Goldsack s.n._ (HOLOTYPE: SGO 49954!; fragment and photo SI!).

Hoffmannseggia falcaria Cav. var. _andicola_ Hook. & Arn., Bot. Misc. 3: 209. 1833. **Type:** ARGENTINA. **Mendoza.** Near Villavicencio at the foot of the mountains near Mendoza, _Dr. Gillies s.n._ (HOLOTYPE: K!; fragment and photo SI!).

Hoffmannseggia patagonica Speg., Anales Soc. Ci. Argent. 47: 283. 1899. **Type:** ARGENTINA. **Chubut.** Trelew, Nov 1897, _J. Valentin s.n._ (HOLOTYPE: LPS 11933 in LP!).

Hoffmannseggia nana Chodat & Wilczek,
Fig. 3. Variation in fruits of Hoffmannseggia species. A. *H. doellii* from northern Argentina has dark-colored slightly recurved fruits. ×2. B. Fruits of *H. miranda* are dehiscent with the valves twisting after the seeds have been shed. ×2. C. *H. peninsularis* from Baja California has fruits similar to those of *H. viscosa* (Fig. 3F). ×2. D. *H. repens* restricted to the deserts of eastern Utah and neighboring Colorado, USA, has broad, flat, undulating fruits. ×0.67. E. *H. tenella*, an endangered species from southern Texas, USA has simple indehiscent fruits. ×3.5. F. *H. viscosa* has lunate fruits. ×1.4. Photos by J. L. Neff.
Based on the description of this species by Chodat and Wilczek and the fact that it was collected in the Atuel River valley we conclude that it is the same species as *H. erecta*.

DISTRIBUTION AND HABITAT: West-central Argentina at elevations from 140–3200 m in the Provinces of Catamarca, La Rioja, San Juan, Mendoza, and Chubut.

CHROMOSOME NUMBER: unknown.

ICONOGRAPHY: Ulibarri, 1979, Fig. 6 a–c; Ulibarri, 1996, Fig. 8A; cover photo, this volume.

Molecular work has confirmed the previous suggestion of one of us (E.A.U. 1996) that hybridization occurs between this species and *Hoffmannseggia trifoliata*. We found the two species growing sympatrically in Mendoza in January 2000 and molecular studies using a combination of nuclear and chloroplast markers showed that morphologically intermediate plants were indeed hybrids (Simpson et al., 2004). *Hoffmannseggia erecta* can usually be recognized by its long, thin fruits (less than 5 mm wide and over 15 mm long) that curl into a circle or an S-shaped form when mature.

6. HOFFMANNSEGGLA EREMOPHILA (Phil.) Burkart ex Ulibarri, Darwiniana 22: 145, Fig. 7 d-i. 1979.

Hoffmannseggia andina Miers, Travels in Chile and La Plata II: 532. 1826. An invalid name because it is a *nomen nudum._

Philippi’s name *Hoffmannseggia andina* needs some explanation because of apparent incorrect citations. In 1870, Philippi (An. Univ. Chile 36: 170) provided a catalog of plants collected in Mendoza by Pablo Ortega and Edwyn Reed. Number 55 b in this catalog was given the name _Hoffmannseggia falcaria_ var. _andina_ Hook. & Arn. Hooker and Arnott never described a variety of _H. falcaria_ named “andina,” but they did describe a var. _andicola_ (see _H. erecta_ above). In the 1891 publication enumerating plants he collected in Tarapacá, Chile, Philippi described _Hoffmannseggia andina_ citing a Paipote specimen. He also cited within the protologue, _Hoffmannseggia falcaria_ var. _andina_ Phil. giving as its publication, An. Univ. Chile 1870, p. 170 (i.e., the same place where the supposed _H. f. var. andina_ Hook. & Arn. is mentioned). It is not clear why Philippi at this point attributed the variety to himself. Ulibarri (1979) considered _H. f. var. andina_ Phil. a _nomen nudum_ but we could also consider that Philippi’s name was an orthographic variant of Hooker and Arnott’s name. We do not assume that this reference indicates that Philippi’s _H. andina_ is based on the same type as _H. falcaria_ var. _andicola_. In any case, the 1891 entity is from northern Chile and belongs within _H. eremophila_. The Mendoza specimen from the Ortega and Reed collections would presumably be _H. erecta_.

Hoffmannseggia andina Miers. var. _eremo-
Hoffmannseggia philippiana Hosseus, Bol. Acad. Nac. Ci. Republ. Argent. 26: 140. 1921. A substitute name Hosseus provided for *H. andina* Phil. because he thought the epithet ‘andina’ was pre-occupied by *H. andina* Miers [actually a nomen nudum].

Distribution and Habitat: Collected from northern Chile and northwestern Argentina in dry, rocky soils at elevations from 3000–4000 m.

Chromosome Number: 2n = 24 (as *H. andina*) (Covas and Schnack, 1946).

Iconography: Ulibarri, 1979, Fig. 7 d-f; Ulibarri, 1996, Fig. 8B, C; Simpson et al. 2004, Fig. 5A.

Representative Specimens Examined:

This species usually consists of small rosette perennial herbs that are easily confused with *Hoffmannseggia yaviensis* and *H. minor*. Based on molecular work, *H. eremophila* is not closely related to either. In fact, it is the sister to the rest of the herbaceous clade (Fig. 1). Roots of this species form tuber-like swellings that are characteristic of the South American high-elevation herbaceous clade and it bears its fruits curving downward. It can most easily be distinguished from the other high elevation South America species by the presence of black-tipped glandular trichomes often mixed with villous non-glandular trichomes on the sepals and petals. It differs from *H. doellii* in having a less curved fruit and leaflets that are usually red-edged and bearing glandular trichomes.

* Larrea glauca* Ortega, Nov. pl. desc. dec. 15. tab. 2. 1797. **Type:** Listed as originally collected by Née from Peru but described from a specimen growing at the Madrid Botanical Garden. (HOLOTYPE: MA; photo at TEX! However the photo says collected by Ruiz and Pavón in Chile). A rejected name because of conservation of *Larrea* Cav. a genus of Zygophyllaceae.

* Caesalpinia glauca* (Ortega) Kuntze, Rev. gen. pl. 3 (2): 52. 1898.

* Hoffmannseggia falcaria* Cav., Icon. 4: 63, tab. 392. 1798. An illegitimate name since it was a substitute name (by citation) for *Larrea glauca* Ortega.

* Caesalpinia falcaria* (Cav.) Kuntze, Rev. gen. pl. 3 (2): 52. 1898.

* Hoffmannseggia stricta* Benth in A. Gray, Pl. Wright. 1: 56. 1852 [Smithsonian Contr. Knowl. 3(5): 56]. **Type:** MEXICO. ZA-CATECAS. T. Coulter 488 (LECTOTYPE: GH! designated by Fisher 1892; ISOLEC-TOTYPES: K!, NY!).

Caesalpinia falcaria (Cav.) Fisher var. densiflora (Benth.) Fisher, Bot. Gaz. 18: 122. 1893.

Larrea densiflora (Benth.) Britton, N. Amer. fl. 23 (5): 311.1930.

Hoffmannseggia falcaria Cav. var. capitata Fisher, Contr. U. S. Natl. Herb. 1: 145. 1892. TYPE: UNITED STATES. ARIZONA. [PIMA CO.]: Santa Cruz Valley near Tucson, 11 May 1881, Pringle s.n. pro parte (HOLOTYPE: GH!; ISOTYPES: Fl!, NY!). This type and that of Hoffmannseggia falcaria var. pringlei (see below) are mounted on the same sheet at GH.

Caesalpinia falcaria (Cav.) Fisher var. capitata (Fisher) Fisher, Bot. Gaz. 18:122. 1893.

Caesalpinia falcaria (Cav.) Fisher var. rusbyi (Fisher) Fisher, Bot. Gaz. 18: 122. 1893.

Distribution and Habitat: In weedy and ruderal localities broadly across the United States from Kansas and Colorado south to southwestern Texas and west to California and in Mexico in Baja California and north-central Mexico south to Puebla [Isely, 1975, Map 74; Simpson, 1999, Fig. 5]. In South America, the species occurs from southern Peru across Bolivia into northern Chile and in Argentina as far south as Patagonia. It has been recorded at elevations from sea level to 3400 m.

Chromosome Number: 2n = 24 (Covas and Schnack, 1946; Turner, 1956)

Iconography: Ulibarri, 1979, Figs. 1–4; Ulibarri, 1996, Fig. 6; Hickman, 1993 p. 615; Fig. 6; Simpson, 1999, Plate 1A; Lewis, 2005, p. 145.

This species is amphitropically distributed in North and South America and covers huge expanses of terrain on both continents. It was recently reported adventive...
in arid, disturbed areas of the province of Alicante in southeastern Spain (Camuñas and Crespo, 1999). It is a weedy and aggressive species spreading by root-borne shoots. Its variability and distribution are reflected in the numerous described entities given in the synonymy, none of which is recognized here. Many of these entities are undoubtedly only clones from various localities. It is the only species in North America with roots that form tuber-like growths, reflecting its South American origin and relationship with the clade of South American species, many of which have the same “root tuber” forming character. Despite its ready growth on disturbed sites and its being labeled a weed of agricultural pastures in southwestern North America, the bright yellow flowering stalks can be rather pretty as they line highway median strips and roadsides. The species can be distinguished from all other North American species because of the conspicuous glandular trichomes on the claws of the petals.

Larrea humilis (Mart. & Galeotti) Britton, N. Amer. fl. 23(5): 316. 1930.

Caesalpinia platycarpa (Benth.) Fisher, Bot. Gaz. 18: 122. 1893.

Larrea platycarpa (Benth.) Britton, N. Amer. fl. 23(5): 314. 1930.

Larrea villosa Britton, N. Amer. fl. 23(5): 313. 1930. Type: MEXICO. HIDALGO. Mountain slopes, Ixmiquilpan, Jul 1905, C. A. Purpus 1369a (HOLOTYPE: NY!).

DISTRIBUTION AND HABITAT: Mexico in calcareous soils in the states of Hidalgo, Nuevo León, Oaxaca, Puebla, Querétaro, and Tamaulipas at elevations of 1700–2300 m (Simpson, 1999, Fig. 4 as H. gladiata).

CHROMOSOME NUMBER: unknown.

ICONOGRAPHY: Lacking.

This species has vestiture very similar to that of Hoffmannseggia oxycarpa, namely dense glandular trichomes on the pedicels and sepals. The fruits however, are most similar to those of H. tenella, rectangular with parallel sides and indehiscent. This species might therefore provide a link between H. oxycarpa and H. tenella, which are sister species despite the disparity in morphology. In the molecular phylogeny, H. humilis is not sister to the oxycarpa-tenella pair (Fig. 1), but the relative positions of H. watsonii and H. humilis have little support in the tree.

Larrea intricata (Brandegee) Britton, N. Amer. fl. 23(5): 311. 1930.

Distribution and Habitat: Deserts of Mexico in western Sonora and central Baja California, Mexico from sea level to 600 m (Simpson, 1999, Fig. 3).

Chromosome Number: unknown.

Iconography: Simpson et al., 2004, Fig. 5 B.

This low, divaricately branched shrub can be locally common in Baja California. It approaches Hoffmannseggia microphylla in morphology and may hybridize with it in southernmost California and northern Baja California.

Caesalpinia virgata Fisher, Bot. Gaz. 18: 123. 1893. A necessary epithet change if this taxon is placed in Caesalpinia because of preoccupation of the epithet microphylla in Caesalpinia.

Larrea microphylla (Torr.) Britton, N. Amer. fl. 23(5): 310. 1930.

Distribution and Habitat: Very common in southwestern Arizona and southern California, U.S.A., and northern Baja California, Mexico from sea level to 1000 m (Isely, 1975, Map 13 as Caesalpinia virgata; Simpson, 1999, Fig. 6).

Chromosome Number: $2n = 24$ (Bell, 1965).

Plants of this species are distinctive with their almost aphyllous appearance. Leaves, when present, have a terminal pinna that is much longer than the lateral pair of pinnae.

11. Hoffmannseggia Minor (Phil.) Ulibarri, Darwiniana 22: 146, Fig. 6 f-h. 1979.

Hoffmannseggia doellii var. minor Phil., Anales Mus. Nac., Santiago de Chile Sec. 2 Bot. p. 19. 1891. Type: Chile. [Tarapacá] Prope Sitani in Provincia Tarapacá, Jan 1866, Rahmer s.n. (HOLOTYPE: SGO 49952; photo SI!).

Distribution and Habitat: High elevations (3000–4000 m) in the Andes of Bolivia (La Paz, Oruro, Potosí), Chile (Antofagasta, Tarapacá), and northwestern Argentina (Jujuy, Salta, and Catamarca).

Chromosome Number: unknown.

Iconography: Ulibarri, 1979, Fig. 6 f-h; Ulibarri, 1996, Fig. 7G; Fig. 2C this article.

Molecular studies (Simpson et al., 2004) and examination of morphology support Ulbarri’s (1979) elevation of Philipp’s variety of *Hoffmannseggia doellii* to specific rank. While *H. doellii* and *H. minor* are both small rosette species, they are quite distinctive. Plants of *H. minor* lack the dark capitate trichomes on the sepals and pedicels characteristic of *H. doellii*. The former also tends to have a conspicuous row of bright white short trichomes along the margins of the leaflets whereas the latter has scattered trichomes over all parts of the leaflet. The fruits of *H. minor* are short and recurved only slightly whereas those of *H. doellii* are longer and curl into a semi-circle or even a nearly complete circle.

Hoffmannseggia stipulata Sandwith, Bull. Misc. Inform. Kew 1939: 181. 1939. **Type:** PERU. **AREQUIPA.** Mejía, S of Mollendo in sandy dups on open hillsides, 90–180 m, 17 Sep 1937, D. Stafford 899 (HOLOTYPE: K!; ISOTYPE SI!).

Distribution and Habitat: On sandy roadsides and on lomas (large, sandy coastal dunes) on the southern coast of Peru at elevations from sea level to 800 m.

Chromosome Number: unknown.

Iconography: Figs. 2D and 3B this article.

Representative Specimens Examined:

PERU. AREQUIPA: Islay, lomas de Mollendo, XI-1983 (fl), Dillon & Dillon 3958 (SI); Mollendo, 11-XII-1956 (fl), R. Ferreya 12096 (SI, USM); Ibidi, X-XI-1933 (fl, fr inmaduro), D. Stafford 297 (BM, K; fragm. SI); llanos de Atiquipa, 5-XI-1953 (fl), Vargas 10932 (SI). **MOQUEGUA:** lomas de Ilo, 30-XI-1955 (fl, fr inmaduro), R. Ferreya 11601 (SI, USM); llanos de Mostacilla, 11-12-XI-1949 (fl), Vargas 8576 (LII, SI); 13.5 km NE of Islay from Arequipa, 20-II-2000 (fl), B. B. Simpson 20-II-00-1 (TEX, SI). Camaná, Camaná: 18.7 km NNW of Cerrillos, 21-II-200 (fl, fr), B. B. Simpson 21-II-00-1 (TEX, SI).

This is a very distinctive species but shows variation among different populations. The most distinctive feature is the presence of long, red or purple multicellular trichomes on the claws of the petals. Plants of this species are also larger than any of the other South America herbaceous species (plants can actually be rather woody and branched at the base), ranging up to 60 cm tall. The fruits are also distinctive in being dehiscent with each valve twisting around itself like those of *H. oxyacarpa*. Plants described as *H. stipulata* have broad (to 2 mm wide) fan-shaped stipules that are deeply lacerate across the top edge. Only one or two specimens have ever been collected with stipules as large as those of the type of *H. stipulata*. However, specimens of typical *H. miranda* (and of *H. arequipensis*) have smaller stipules with basically the same shape. When branches are covered with soil, the stipules tend to be larger and the internodes shorter leading to a morphology similar to that of the type of *H. stipulata*.

The molecular study of Simpson et al., (2004) showed plants ascribed to *Hoffmannseggia arequipensis* in this article embedded in a clade of *H. miranda* samples. While we recognize *Hoffmannseggia arequipensis* here as a separate species on morphological criteria, future work might show that it is better considered as an ecological variant of *H. miranda*.
13. HOFFMANNSEGGIA OXYCARPA Benth. in A. Gray.

Caesalpinia oxycarpa (Benth.) Fisher, Bot. Gaz. 18: 122. 1893.

Larrea oxycarpa (Benth.) Britton, N. Amer. fl. 23 (5): 312. 1930.

DISTRIBUTION AND HABITAT: Limestone soils in southern Texas in the United States and in Mexico in the states of Coahuila, Nuevo León, and Tamaulipas (Isely, 1975, Map 76; Simpson, 1999, Fig. 6).

CHROMOSOME NUMBER: unknown.

ICONOGRAPHY: Simpson, 1999, Plate 1F.

Plants of this subspecies have red or yellow glandular trichomes on the young stems and rachises. This species is often misidentified as Hoffmannseggia glauca. However, the claws of the petals lack the glandular trichomes characteristic of that species. In addition, the fruits of H. glauca are indehiscent, lightly tomentose (sometimes with a few glandular trichomes) and sickle-shaped whereas those of H. oxycarpa are irregularly obtrullate, dehiscent (with the valves twisting), and densely covered with long multicellular glandular trichomes.

13 b. HOFFMANNSEGGIA OXYCARPA Benth. in A. Gray subsp. ARIDA (Rose) B. B. Simpson, Lundellia 2: 40. 1999.

Larrea arida (Rose) Britton, N. Amer. fl. 23 (5): 313. 1930.

DISTRIBUTION AND HABITAT: Rocky, calcareous soils in Mexico in the states of Querétaro and Hidalgo at elevations up to 2100 m (Simpson, 1999, Fig. 6).

CHROMOSOME NUMBER: unknown.

ICONOGRAPHY: Rose, 1906 cited above, pl. 29.

Until the revision by Simpson (1999) this taxon was treated as a distinct species, but it has all of the unique characters of typical Hoffmannseggia oxycarpa: glandular capitate trichomes on the stems, leaf rachises, and fruit valves. It also has the unique feature (for North American herbaceous species) of fruits with valves that twist around themselves after dehiscing. It differs from the nominate subspecies in having black-tipped (rather than yellow or red) glandular trichomes. Both occur in calcareous soils but are disjunct between Nuevo León and Hidalgo, Mexico.

DISTRIBUTION AND HABITAT: Restricted in distribution to northeastern Baja Cal-
California at or near sea level (Simpson, 1999, Fig. 7).

CHROMOSOME NUMBER: unknown.

ICONOGRAPHY: Simpson, 1999, Plate 1D; Fig. 3C this article.

This species consists of highly branched small shrubs covered with yellow capitate glandular trichomes. In morphology it resembles *Hoffmannseggia viscosa* to the extent that one of us (Ulibarri, 1996) suggested that the two might be conspecific. Molecular work (Simpson et al., 2004) clearly showed that this species is more related to the other Baja California species (*H. microphylla*, *H. intricata*) than to the South American *H. viscosa*.

15. **Hoffmannseggia prostrata** Lag. ex DC., Prodr. 2: 485. 1825. **TYPE:** PERU. circa Lima, 1825, Lagasca 135 (HOLOTYPE: G-DC, fiche 13561, 2: 485 TEX!).

Hoffmannseggia pilosa Ruiz & Pav. ex G. Don, Gen. hist. 2: 434. 1832. One of us (E.A.U. 1996) listed both this name and *Caesalpinia pilosa* Ruiz & Pav. ex G. Don (from the same publication) as synonyms of *H. prostrata*. Indeed, Don mentioned *Caesalpinia pilosa* as an herbarium name of Ruiz and Pavon, but he described the species as *Hoffmannseggia pilosa*. We do not consider *C. pilosa* Ruiz & Pav. to be a valid name since it was never published as such. The type was said to be a Ruiz and Pavón specimen in the Lambert Herbarium.

DISTRIBUTION AND HABITAT: Very widespread in sandy and stony soils in southern Peru (La Libertad, Arequipa, Moquegua, Tacna) and northern Chile (Antofagasta) at elevations ranging from 150 m to 2700 m.

CHROMOSOME NUMBER: unknown.

ICONOGRAPHY: Ruiz and Pavon, Ic. 377 cited above.

REPRESENTATIVE SPECIMENS EXAMINED:

PERU. La Libertad. Lomas de Viru, 5-IX-1984 (fr), Mostacero & Ramirez 671 (K). Lima: 66 km a Canta, s. fecha (fl, fr), E. Carrillo 386 (SI); Canta, 3-III-1976 (fl, fr), Saunders 1392 (K), La Paloma, 24-II-1952 (fl), Saunders 145 (BM). Arequipa, II-1934 (fl, fr), Stafford 305 (BM, K). Tacna. lomas de Jamaica Grande, 4-X-1957 (fl, fr), R. Ferreyra 12505 (SI). **CHILE.** II Región. Antofagasta: Tocopilla, 9-I-1941 (fl, fr), Barros 3542 (SI); Salar del Carmen, 24-IX-1940 (fl, fr), Barros 3545 (SI); Taltal, X-1926 (fl, fr), E. Werdermann 813 (BM, K).

This species, like *Hoffmannseggia glauca*, manages to live well with humans and can be found along roadides and in and around cultivated fields. It shares with its sister species, *H. miranda* (and *H. arequipensis*), conspicuous multicellular trichomes on the claws of the petals. However, the trichomes of *H. prostrata* are clavate, yellow, and shorter (less than 0.5 mm) than those of *H. miranda* which are red-purple (sometimes yellow) and range from 0.5 to 2 mm in length. The overall aspect with the multiflowered spike of yellow flowers and the straight to slightly curved fruit is reminiscent of *H. glauca* leading to frequent misidentifications. The two differ primarily in fruit. After flowering, the flowers of *H. glauca* bend downward. The mature fruit is indehiscent, has parallel sides and a rounded tip and curves upward forming an arc. The flowers of *H. prostrata* remain upright after flowering. The mature fruits are straight with a pointed tip. They are tardily dehiscent with each valve twisting around itself.

Distribution and Habitat: Southern Bolivia and northwestern Argentina in the provinces of Catamarca, Jujuy, La Rioja, and San Juan at elevations of 1000–4000 m. Chromosome Number: unknown. Iconography: Hosseus, 1924, f. 26 cited above; Burkart, 1936 cited above, Figs. 1a, b, lam. 6B; Ulibarri, 1996, Fig. 5A.

This species was described as a Caesalpinia in 1878 and remained in that genus until Simpson et al. (2004) placed it in Hoffmannseggia after molecular work clearly showed that it is sister to H. drummondii. It is the only South American member of the genus that is completely woody.

Distribution and Habitat: Endemic to the blackland prairie region of Texas in Nueces and Kleberg counties, basically at sea level (Isely, 1975, Map 78; Simpson, 1999, Fig. 7).

Chromosome Number: Unknown. Iconography: Simpson, 1999, Plate 1E; Fig. 3E this article.

This diminutive species (usually much less than 20 cm tall) is the only species of Hoffmannseggia that is listed in the United States as Federally Endangered. Because of...
the destruction of its habitat due to agriculture, the species is now restricted to a few areas such as graveyards and unplowed roadsides. Its most distinguishing feature is the straight fruit pointed at both ends. Molecular data strongly support its being sister to Hoffmannseggia oxycarpa, but in morphology it more closely resembles H. watsonii.

19. Hoffmannseggia trifoliata Cav., Icon. 4: 64, t. 393. 1798. Type: Argentina. Habitat in America meridionalis portu Deseado, [without collector]. (Holotype: MA, photograph Field Mus. 29419 at TEX! SI!).

Hoffmannseggia trifoliata Cav. var. microphylla (Speg.) Ulibarri, Darwiniana 22: 152. 1979.

Distribution and Habitat: Primarily in open grassy areas in central and southern Argentina in the provinces of Neuquén, Rio Negro, Chubut, Santa Cruz, Buenos Aires, and La Pampa. Also reported from Aysén in southern Chile.

Chromosome Number: unknown.

Iconography: Ulibarri, 1979 Fig. 7 a-c; Ulibarri, 1996, Fig. 8 d.

This species is variable in its own right and hybridization with Hoffmannseggia erecta (see above) has undoubtedly added to the confusion when trying to place a name on a particular specimen. In an article in which he described new entities for Patagonia, Spegazzini (1899) listed four named entities (microphylla, glaberrima, normalis, and glandulosa) each preceded by a letter that he explicitly stated in the text were forms. He also described a variety, H. trifoliata var. pentaphylla (see below). In the revision of Hoffmannseggia of Argentina (Ulibarri 1979) and later in the synopsis of Caesalpinia and Hoffmannseggia for South America (Ulibarri 1996), one of us listed only one of these, microphylla. He gave its rank as variety and ascribed it to Spegazzini (with the publication and page number where it was listed as one of the four forms). We have included in the synonymy the other forms given by Spegazzini and, like the International Plant Names Index, attributed to Ulibarri the change in rank from forma to variety.

This species is most easily confused with Hoffmannseggia erecta but can usually be distinguished from it by the possession of only one pair of pinnae in addition to...
the terminal pinna and by its more pointed leaflets. In general, plants of this species are more robust than those of \textit{H. erecta}.

Probable hybrid:

When he described this variety, Spegazzini stated that in habit it was similar to his \textit{forma normalis} and \textit{microphylla} and suggested that it was a hybrid between \textit{Hoffmannseggia trifoliata} and \textit{H. falcaria} (= \textit{H. glauca}). Ulibarri (1979) concluded that it was a hybrid, but between \textit{H. trifoliata} and \textit{H. erecta}.

\textit{Hoffmannseggia falcaria} Cav. var. \textit{glandulosa} Hook. & Arn., nom. illeg. Bot. Misc. 3: 209: 1832. An epithet for the var. \beta described the previous year. By stating in this publication that this taxon is the same as \textit{Larrea viscosa} Ruiz & Pav., Hooker and Arnott created a superfluous name and hence this name is illegitimate.

DISTRIBUTION AND HABITAT: Coastal sands to high elevation roadsides from northern Chile (Tarapaca) across western Peru (Tacna, Arequipa, Ica, Ancash, Lima, Cajamarca, Lambayeque, Piura) to southernmost Ecuador (Loja).

CHROMOSOME NUMBER: \(2n = ca. 24\) (Diels, 1961).

ICONOGRAPHY: Ruiz and Pavon, t. 377 cited above; Fig. 2E, Fig. 3F this article.

REPRESENTATIVE SPECIMENS EXAMINED:

PERU. AREQUIPA. Camaná. Camaná: 7 km NW of Ocoño, 21-II-2000 (fl, fr), B. B. Simpson 21-II-00-2 (TEX, SI); Caraveli: 7.4 km W of the turn to Atiquipa, 22-II-2000 (fl, fr), B. B. Simpson 22-II-00-3 (TEX, SI). **CAJAMARCA.** El Potachuelo, Ascope-S. Be­ niito, 17-V-1979 (fr), A. Sagaségui et al. 9223 (SI).

LAMBAYEQUE. Pampa Las Delicias, Reque, 5-II-1986 (fr), J. F. Macbr., Llatas Quiros 1763 y 1767 (SI). **PIURA.** Caraveli: 7 km W of the turn to Atiquipa, 21-II-2000 (fr), A. Weberbauer 7419a (LIL).

SYNOPSIS OF DISTRIBUTION AND HABITAT: Coastal sands to high elevation roadsides from northern Chile (Tarapaca) across western Peru (Tacna, Arequipa, Ica, Ancash, Lima, Cajamarca, Lambayeque, Piura) to southernmost Ecuador (Loja).

CHROMOSOME NUMBER: \(2n = ca. 24\) (Diels, 1961).

ICONOGRAPHY: Ruiz and Pavon, t. 377 cited above; Fig. 2E, Fig. 3F this article.

REPRESENTATIVE SPECIMENS EXAMINED:

PERU. AREQUIPA. Camaná. Camaná: 7 km NW of Ocoño, 21-II-2000 (fl, fr), B. B. Simpson 21-II-00-2 (TEX, SI); Caraveli: 7.4 km W of the turn to Atiquipa, 22-II-2000 (fl, fr), B. B. Simpson 22-II-00-3 (TEX, SI). **CAJAMARCA.** El Potachuelo, Ascope-S. Ben­ nito, 17-V-1979 (fr), A. Sagaségui et al. 9223 (SI).

LAMBAYEQUE. Pampa Las Delicias, Reque, 5-II-1986 (fl, fr), J. F. Macbr., Llatas Quiros 1763 y 1767 (SI). **PIURA.** Caraveli: 7 km W of the turn to Atiquipa, 21-II-2000 (fr), A. Weberbauer 7419a (LIL).

SYNOPSIS OF DISTRIBUTION AND HABITAT: Coastal sands to high elevation roadsides from northern Chile (Tarapaca) across western Peru (Tacna, Arequipa, Ica, Ancash, Lima, Cajamarca, Lambayeque, Piura) to southernmost Ecuador (Loja).

CHROMOSOME NUMBER: \(2n = ca. 24\) (Diels, 1961).

ICONOGRAPHY: Ruiz and Pavon, t. 377 cited above; Fig. 2E, Fig. 3F this article.

REPRESENTATIVE SPECIMENS EXAMINED:

PERU. AREQUIPA. Camaná. Camaná: 7 km NW of Ocoño, 21-II-2000 (fl, fr), B. B. Simpson 21-II-00-2 (TEX, SI); Caraveli: 7.4 km W of the turn to Atiquipa, 22-II-2000 (fl, fr), B. B. Simpson 22-II-00-3 (TEX, SI). **CAJAMARCA.** El Potachuelo, Ascope-S. Ben­ nito, 17-V-1979 (fr), A. Sagaségui et al. 9223 (SI).

LAMBAYEQUE. Pampa Las Delicias, Reque, 5-II-1986 (fl, fr), J. F. Macbr., Llatas Quiros 1763 y 1767 (SI). **PIURA.** Caraveli: 7 km W of the turn to Atiquipa, 21-II-2000 (fr), A. Weberbauer 7419a (LIL).

SYNOPSIS OF DISTRIBUTION AND HABITAT: Coastal sands to high elevation roadsides from northern Chile (Tarapaca) across western Peru (Tacna, Arequipa, Ica, Ancash, Lima, Cajamarca, Lambayeque, Piura) to southernmost Ecuador (Loja).

CHROMOSOME NUMBER: \(2n = ca. 24\) (Diels, 1961).

ICONOGRAPHY: Ruiz and Pavon, t. 377 cited above; Fig. 2E, Fig. 3F this article.
Hoffmannseggia viscosa and **H. ternata**. However, in herbaria there is no consistency in how they are treated. One of us (Ulibarri 1996) separated the two on the basis of pinnae (1 pair in the case of **H. ternata** and (1)2–4 pair in the case of **H. viscosa**), leaflet number (4–5 pairs in **H. ternata** and 5–9 pairs in **H. viscosa**), and stipule shape (ovate and 1 mm long in **H. ternata**, deltoid and 1–2.5 mm long in **H. viscosa**), but these characters are completely intermixed across the geographical range although there is a tendency for the number of pinnae to increase from northern Chile to southern Ecuador. In other characters, there is extreme variability, but no consistent pattern, across the geographic range. Some populations have plants that are comparatively upright and others very prostrate. Some plants are densely glandular pubescent while others are completely glabrous. Plants can have small fruits (6 mm long, usually on glabrous plants) rather crescent-shaped in outline but other populations have arcuate fruits up to 20 mm long. For the molecular study we sampled seven populations with various combinations of morphological traits. Results from combined molecular ITS 1 & 2 and the trnL-trnF spacer and intron sequences showed all types to be intermixed (Simpson et al., 2004). In terms of typification, the types of the two are the same entity, highly branched and very glandular plants. Thus we treat **H. ternata** as a synonym of **H. viscosa**. Consequently if the more gracile, glabrous form is ultimately found to be a distinct species, it will need a new name.

This taxon is exceedingly weedy and grows through the tarmac on highways and along roadsides. It appears to be autogamous and the variation seen could be the result of founder effects and inbreeding.

Caesalpinia watsonii Fisher, Bot. Gaz. 18: 122. 1892. [Based on the type of **H. gracilis** S. Watson but a valid name change if the species is placed *Hoffmannseggia* because of a prior epithet *gracilis* in *Caesalpinia*].

Laurea watsonii (Fisher) Britton, N. Amer. fl. 23 (5): 312. 1930.

DISTRIBUTION AND HABITAT: Limestone and rocky soils in eastern Mexico in the states of Coahuila, Guanajuato, Hidalgo, and Nuevo León, at 1900–2700 m elevation (Simpson 1999, Map 7).

CHROMOSOME NUMBER: unknown.

ICONOGRAPHY: Simpson 1999, Plate 1B.

This species resembles *Hoffmannseggia tenella* in having a straight fruit, but the fruits are larger (16–30 mm long) in **H. watsonii** versus 8–19 mm long in **H. tenella**. The two also differ in habitat, with **H. tenella** growing in dark clay soils and **H. watsonii** in stony, often calcareous soil.

22. **Hoffmannseggia yaviensis** Ulibarri, Darwiniana 22: 147. f. 5 h-m. 1979. Type: ARGENTINA. **JUJUY. Yavi:** La Quiaca-Villazón, 24 Jan 1940. 3442 m, R. Schreiter 11098 (in part) (HOLOTYPE: SI!; ISOTYPE: LIL!).

DISTRIBUTION AND HABITAT: High elevation habitats of southern Bolivia and northwestern Argentina (Jujuy, Salta, Tucumán, and Catamarca) in dry soil from 3400–3600 m.

CHROMOSOME NUMBER: unknown.

ICONOGRAPHY: Ulibarri, 1979, Fig. 5 h-m; Ulibarri, 1996, Fig. 7A-C; Fig. 2F this article.

REPRESENTATIVE SPECIMENS EXAMINED: BO-

Specimens of this small perennial herb were often mislabeled as Hoffmannseggia doellii or H. eremophila (both of which it resembles because of its small size) before one of us (E.A.U) recognized that they belonged to a separate taxon (Ulibarri 1979) that he described as H. yaviensis. It can be distinguished from both by the lack of multicellular glandular trichomes on the sepals and pedicels. Hoffmannseggia minor, another small, high elevation species can de distinguished by trichomes on the sepals that are straight and appressed to the surface whereas those of H. yaviensis are short and curly.

Disposition of Names and Taxa Placed at Various Times in Hoffmannseggia

Names in **bold** are accepted. For others, current, accepted placement is given after the “= ” sign. Accepted species are treated alphabetically in this revision. H. refers to Hoffmannseggia and C. to Caesalpinia.

Caesalpinia bangii Rushy = C. fimbriata Tul. (fide Ulibarri, 1996). When Rushy described this species he listed it as Caesalpinia (Hoffmannseggia) bangii which has led to its occasional erroneous (since the combination was never made) listing as ‘H. bangii’.

Caesalpinia chicamana Killip & J. F. Macbr. = H. glauca (Ortega) Eifert
Caesalpinia drepanocarpa (A. Gray) Fisher = H. drepanocarpa A. Gray

Caesalpinia drummondii (Torr. & A. Gray) Fisher = H. drummondii Torr. & A. Gray
Caesalpinia egena (J. F. Macbr.) J. F. Macbr. = H. viscosa (Ruiz & Pav.) Hook.
Caesalpinia falcaria (Cav.) Fisher = H. glauca (Ortega) Eifert
Caesalpinia falcaria (Cav.) Fisher var. capitata (Fisher) Fisher = H. glauca (Ortega) Eifert
Caesalpinia falcaria (Cav.) Fisher var. densiflora (Benth.) Fisher = H. glauca (Ortega) Eifert
Caesalpinia falcaria (Cav.) Fisher var. pringlei (Fisher) Fisher = H. glauca (Ortega) Eifert
Caesalpinia falcaria (Cav.) Fisher var. rusbyi (Fisher) Fisher = H. glauca (Ortega) Eifert
Caesalpinia falcaria (Cav.) Fisher var. stricta (Benth.) Fisher = H. glauca (Ortega) Eifert
Caesalpinia fisheriana Rusby = C. trichocarpa Griseb. (fide Ulibarri, 1996). When Rusby described this species he listed it as Caesalpinia (Hoffmannseggia) fisherianna which has led to its occasional erroneous (since the combination was never made) listing as ‘H. fisherianna.’
Caesalpinia gladiata (Benth.) Fisher = H. humilis (Mart. & Galeotti) Hemsley
Caesalpinia glauca (Ortega) Kuntze = H. glauca (Ortega) Eifert
Caesalpinia intricata (Brandegee) Fisher = H. intricata Brandegee
Caesalpinia intricata (Brandegee) Fisher var. glabra (S. Watson) Fisher = H. intricata Brandegee
Caesalpinia miranda (Sandwith) J. F. Macbr. = H. miranda Sandwith
Caesalpinia oxycarpa (Benth.) Fisher = H. oxycarpa Benth. subsp. oxycarpa
Caesalpinia peninsularis (Britton) Eifert = H. peninsularis (Britton) Wiggins
Caesalpinia platycarpa (Benth.) Fisher = H. humilis (Mart. & Galeotti) Hemsley
Caesalpinia prostrata (DC.) J. F. Macbr. = H. prostrata Lag. ex DC.
Caesalpinia pumilio Griseb. = H. pumilio (Griseb.) B. B. Simpson
Caesalpinia pumilio Griseb. var. riojana (Hosseus) Burkart = H. pumilio (Griseb.) B. B. Simpson
Caesalpinia repens Eastw. = H. repens (Eastw.) Cockerell
Caesalpinia riojana Kurtz ex Hosseus = H. pumilio (Griseb.) B. B. Simpson
Caesalpinia rosulata Rusby = C. trichocarpa (fide Ulibarri, 1996). When Rusby described this species he listed it as Caesalpinia (Hoffmannseggia) rosulata which has led to its occasional erroneous (since the combination was never made) listing as 'H. rosulata.'
Caesalpinia stipulata (Sandwith) J. F. Macbr. = H. miranda Sandwith
Caesalpinia ternata (Phil.) J. F. Macbr. = H. viscosa (Ruiz & Pav.) Hook.
Caesalpinia texensis (Fisher) Fisher = H. drummondii Torr. & A. Gray
Caesalpinia virgata Fisher = H. microphylla Torr.
Caesalpinia viscosa (Ruiz & Pav.) = H. viscosa (Ruiz & Pav.) Hook.
Caesalpinia watsonii Fisher = H. watsonii (Fisher) Rose
Hoffmannseggia andina Miers, an invalid name, nomen nudum.
Hoffmannseggia andina Gill ex Hook. & Arn., an invalid name, nomen nudum
Hoffmannseggia andina Phil. = H. eremophila (Phil.) Burkart
Hoffmannseggia andina Phil. var. eremophila (Phil.) Reiche = H. eremophila (Phil.) Burkart
Hoffmannseggia andina Miers var. eremophila (Phil.) Reiche, an invalid name since the species H. andina Miers is a nomen nudum.
Hoffmannseggia arida Rose = H. oxycarpa Benth. subsp. arida (Rose) B. B. Simpson
Hoffmannseggia brachycarpa A. Gray = Pomaria brachycarpa (A. Gray) B. B. Simpson
Hoffmannseggia burchelli (DC.) Benth. = Pomaria burchellii (DC.) B. B. Simpson & G. P. Lewis
Hoffmannseggia burchelli (DC.) Benth. subsp. rubro-violacea (Baker f.) Brummitt & J. H. Ross = Pomaria burchellii (DC.) B. B. Simpson & G. P. Lewis
Hoffmannseggia canescens Fisher = Pomaria canescens (Fisher) B. B. Simpson
Hoffmannseggia caudata A. Gray = C. caudata (A. Gray) Fisher
Hoffmannseggia chicamana (Killip & J. F. Macbr.) Eifert = H. glauca (Ortega) Eifert
Hoffmannseggia chilensis Miers, an invalid name, nomen nudum
Hoffmannseggia demissa Benth., and invalid name, nomen nudum
Hoffmannseggia densiflora Benth. = H. glauca (Ortega) Eifert
Hoffmannseggia doelli Phil.
Hoffmannseggia doelli Phil. var. minor Phil. = H. minor (Phil.) Ulibarri
Hoffmannseggia drepanocarpa A. Gray
Hoffmannseggia drummondii Torr. & A. Gray
Hoffmannseggia erecta Phil.
Hoffmannseggia eremophila (Phil.) Burkart ex Ulibarri
Hoffmannseggia falcaria Cav. nom illeg. = H. glauca (Ortega) Eifert
Hoffmannseggia falcaria var. β Hook. & Arn. = H. viscosa (Ruiz & Pav.) Hook. Invalid name because of the use of a symbol for the subspecific name.
Hoffmannseggia falcaria Cav. var. andicola Hook. & Arn. = H. erecta Phil.
Hoffmannseggia falcaria Cav. var. andina Phil. = H. eremophila (Phil.) Burkart
Hoffmannseggia falcaria Cav. var. capitata Fisher = H. glauca (Ortega) Eifert
Hoffmannseggia falcaria Cav. var. demissa A. Gray = H. glauca (Ortega) Eifert
Hoffmannseggia falcaria Cav. var. densiflora (Benth.) Fisher = H. glauca (Ortega) Eifert
Hoffmannseggia falcaria Cav. var. glandulosa Hook. & Arn. = H. viscosa (Ruiz & Pav.) Hook. Invalid name
Hoffmannseggia falcaria Cav. var. pringlei Fisher = H. glauca (Ortega) Eifert
Hoffmannseggia falcaria Cav. var. rushyi Fisher = H. glauca (Ortega) Eifert
Hoffmannseggia falcaria Cav. var. stricta
Hoffmannseggia oxycarpa (Benth. subsp. arida (Rose) B. B. Simpson

Hoffmannseggia parryi (Fisher) B. L. Turner

Hoffmannseggia parviflora Micheli = Pomaria parviflora (Micheli) B. B. Simpson & G. P. Lewis

Hoffmannseggia patagonica Spec. = H. erecta Phil.

Hoffmannseggia pearsonii Phillips = Pomaria lactea (Schinz) B. B. Simpson & G. P. Lewis

Hoffmannseggia peninsularis (Britton) Wiggins

Hoffmannseggia philippiana Hosseus = H. eremophila (Phil.) Burkart & Ulibarri

Hoffmannseggia pilosa Ruiz & Pav. = H. prostrata Lag. ex DC.

Hoffmannseggia platycarpa Benth. = H. humilis (Mart. & Galeotti) Hemsley

Hoffmannseggia prostrata Lag. ex DC.

Hoffmannseggia pueblana (Britton) Britton = H. humilis (Mart. & Galeotti) Hemsley

Hoffmannseggia pumilio (Griseb.) B. B. Simpson

Hoffmannseggia repens (Eastw.) Cockerell

Hoffmannseggia rubro-violacea Baker f. = Pomaria burchellii (DC.) B. B. Simpson & G. P. Lewis

Hoffmannseggia sandersonii (Harv.) Engl. = Pomaria sandersonii (Harv.) B. B. Simpson & G. P. Lewis

Hoffmannseggia sandersonii (Harv.) Engl. var. lactea Schinz = Pomaria lactea (Schinz) B. B. Simpson & G. P. Lewis

Hoffmannseggia stipulata Sandwith = H. miranda Sandwith

Hoffmannseggia stricta Benth. = H. glauca (Ortega) Eifert

Hoffmannseggia stricta Benth. var. demissa

Hoffmannseggia striola C. Muell. “sphalm” for H. stricta = H. glauca (Ortega) Eifert

Hoffmannseggia tenella Tharp & L. O. Williams

Hoffmannseggia ternata Phil. = H. viscosa (Ruiz & Pav.) Hook.

Hoffmannseggia texensis Fisher = H. drummondii Torr. & A. Gray
Hoffmannseggia trifoliata Cav.
Hoffmannseggia trifoliata Cav. forma glaberrima Speg. = Hoffmannseggia trifoliata Cav.
Hoffmannseggia trifoliata Cav. forma glandulosa Speg. = H. trifoliata Cav.
Hoffmannseggia trifoliata Cav. forma microphylla Speg. = H. trifoliata Cav.
Hoffmannseggia trifoliata Cav. var. microphylla (Speg.) Ulibarri = H. trifoliata Cav.
Hoffmannseggia trifoliata Cav. forma normalis Speg. = H. trifoliata Cav.
Hoffmannseggia trifoliata Cav. var. pentaphylla Speg. = hybrid between H. trifoliata Cav. and H. erecta Phil.
Hoffmannseggia viscosa (Ruiz & Pav.) Hook.
Hoffmannseggia viscosa var. egena J. F. Macbr. = H. viscosa (Ruiz & Pav.) Hook.
Hoffmannseggia watsonii (Fisher) Rose

Hoffmannseggia yaviensis Ulibarri
Larrea arida Rose = H. oxycarpa Benth.
subsp. arida (Rose) B. B. Simpson
Larrea densiflora (Benth.) Britton = H. glauca (Ortega) Eifert
Larrea drepanocarpa (A. Gray) Britton = H. drepanocarpa A. Gray
Larrea drummondii (Torr. & A. Gray) Britton = H. drummondii Torr. & A. Gray
Larrea gladiata (Benth.) Britton = H. humilis (Mart. & Gal.) Hemsley
Larrea glauca Ortega = H. glauca (Ortega) Eifert
Larrea gracilis Ruiz & Pav. = H. prostrata Lag. ex DC.
Larrea hidalgensis Britton = H. oxycarpa Benth. subsp. arida (Rose) B. B. Simpson
Larrea humilis (Mart. & Galeotti) Britton = H. humilis (Mart. & Galeotti) Hemsley
Larrea intricata (Brandegee) Britton = H. intricata Brandegee
Larrea oxycarpa (Benth.) Britton = H. oxycarpa Benth. subsp. oxycarpa.
Larrea pensinsularis Britton = H. pensinsularis (Britton) Wiggins
Larrea platycarpa (Benth.) Britton = H. humilis (Mart. & Galeotti) Hemsley

Larrea potosina Britton = H. humilis (Mart. & Galeotti) Hemsley
Larrea pueblana Britton = H. humilis (Mart. & Galeotti) Hemsley
Larrea texensis (Fisher) Britton = H. drummondii Torr. & A. Gray
Larrea villosa Britton = H. humilis (Mart. & Galeotti) Hemsley
Larrea viscosa Ruiz & Pav. = H. viscosa (Ruiz & Pav.) Hook.
Larrea watsonii (Fisher) Britton = H. watsonii (Fisher) Rose

Moporia repens (Eastw.) Britton & Rose = H. repens (Eastw.) Cockerell
Pomaria humilis Mart. & Galeotti = H. humilis (Mart. & Galeotti) Hemsley
Zuccagnia eremophila Phil. = H. eremophila (Phil.) Burkart ex Ulibarri

ACKNOWLEDGEMENTS

Many people contributed over the years to the study of *Hoffmannseggia*. Jack Neff drove across two continents helping to collect material and taking countless pictures. Leah Larkin, Joshua McDill, Jennifer Tate, and Andrea Weeks all worked with us on the phylogeny and biogeography of the genus. Gwen Gage composed the illustrations in this and other publications on the genus. Richard Spellenberg and Tom Wendt both gave the manuscript a critical reading and made many helpful suggestions.

LITERATURE CITED

