How to translate text using browser tools
1 January 2010 The geological completeness of paleontological sampling in North America
Shanan E. Peters, Noel A. Heim
Author Affiliations +
Abstract

A growing body of work has quantitatively linked many macroevolutionary patterns, including short- and long-term changes in biodiversity, rates of taxonomic extinction and origination, and patterns of extinction selectivity, to temporal variability in the sedimentary rock record. Here we establish a new framework for more rigorously testing alternative hypotheses for these and many other results by documenting the large-scale spatiotemporal intersection of the North American sedimentary rock and fossil records. To do this, we combined 30,387 fossil collections in the spatially explicit Paleobiology Database with a comprehensive macrostratigraphic database consisting of 18,815 sedimentary lithostratigraphic units compiled from 814 geographic regions distributed across the United States and Canada. The geological completeness of paleontological sampling, here defined as the proportion of the available sedimentary rock record that has been documented to have at least one fossil occurrence, irrespective of taxonomy or environment, is measured at four different levels of stratigraphic resolution: (1) lithostratigraphic rock units, (2) hiatus-bound rock packages, (3) regional stratigraphic columns, and (4) sediment coverage area (km2). Mean completeness estimates for 86 Phanerozoic time intervals (approximately stages; median duration 5.3 Myr) range from 0.18 per interval in the case of lithostratigraphic rock units to 0.23 per interval for stratigraphic columns and sediment coverage area. Completeness estimates at all four levels of stratigraphic resolution exhibit similar temporal variation, including a significant long-term increase during the Phanerozoic that is accentuated by an abrupt Campanian–Maastrichtian peak. This Late Cretaceous peak in completeness is approximately five times greater than the least complete Phanerozoic time intervals (Early Cambrian, Early Devonian, late Permian, and Early Cretaceous). Geological completeness in the Cenozoic is, on average, approximately 40% greater than in the Paleozoic. Temporal patterns of geological completeness do not appear to be controlled exclusively by variation in the frequency of subsurface rock units or an increase over time in the proportion of terrestrial rock, but instead may be general features of both the marine and terrestrial fossil records.

Shanan E. Peters and Noel A. Heim "The geological completeness of paleontological sampling in North America," Paleobiology 36(1), 61-79, (1 January 2010). https://doi.org/10.1666/0094-8373-36.1.61
Accepted: 1 May 2009; Published: 1 January 2010
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top