Early Triassic Neospathodus (Conodonta) apparatuses from the Taho Formation, southwest Japan

Author: Koike, Toshio

Source: Paleontological Research, 8(2) : 129-140

Published By: The Palaeontological Society of Japan

URL: https://doi.org/10.2517/prpsj.8.129
Early Triassic Neospathodus (Conodonta) apparatuses from the Taho Formation, southwest Japan

TOSHIO KOIKE
36-6-606 Tokiwadai, Hodogaya-ku, Yokohama City, Japan, 240-0067

Received October 23, 2002; Revised manuscript accepted March 22, 2004

Abstract. Two conodont apparatuses, Neospathodus symmetricus Orchard, 1995 and N. chionensis (Bender, 1967) are reconstructed on the basis of the material from the Spathian (Lower Triassic) limestone in the Taho Formation of Ehime Prefecture, southwest Japan. The Neospathodus apparatuses are composed of eight types of elements: digyrate (cypridodelliform) M, alate S0, digyrate (enantiognathiform) S1, digyrate (grodelliform) S2, bipennate S3/4, angulate P2, and segminate P1 elements. This apparatus structure is the same as that for Neogondolella and is comparable to the standard 15-element plan of the Carboniferous ozarkodinids.

Key words: Gondolellidae, multielements, Neospathodus, Taho Formation, Triassic

Introduction

The genus Neospathodus Mosher includes a group of species possessing segminate P1 elements with a well-developed anterior process; a posterior process that is short or absent (Sweet, 1973). Neospathodus was classified in the family Xaniognathidae Sweet (1981) and then assigned to the family Gondolellidae, together with the genus Neogondolella Bender and Stoppel (Sweet, 1988).

The species of Neospathodus are used as index fossils in the Lower Triassic (e.g., Orchard, 1995). There is, however, a controversy regarding components of the Neospathodus apparatus, namely, is it a unimembrate type or a multimembrate one?

Sweet (1970, 1988) regarded the apparatus of Neospathodus as a single-element (unimembrate) type composed of segminate (neospathodiform) Pa elements. On the other hand, Kozur (1976) believed that Neospathodus exhibits the same apparatus composition as Gondolella with six types of elements. He noted that “Individual ramiform conodonts can, for the most part, be distinguished from those of Gondolella at the form species level; however, several forms cannot be separated at this level. The prioniodiniform (M) element differs only very slightly from apparatus to apparatus. Such a fact is not really remarkable because Neospathodus developed iteratively in several lineages by platform reduction from gondolellids.” He did not, however, provide any more detailed information about the apparatus.

Orchard (1995) pointed out that at least one multi-element apparatus of Neospathodus was tentatively reconstructed in his collections from Nevada, but whether that, or a different, apparatus could be recognized for other species was unknown.

I have undertaken a reconstruction of apparatuses of Neospathodus from the upper Spathian limestone in the Taho Formation exposed in Tahokamigumi, Sirokawa-cho, Higashi-ku, Ehime Prefecture. The Triassic carbonate rocks of the formation are interpreted to have been deposited in an equatorial region of the Panthalassa Ocean (Ando et al., 2001) and occur as a large exotic block in Jurassic clastic rocks (Koike, 1994). I present herein the systematic description of two multielement species of Neospathodus, N. symmetricus Orchard and N. chionensis (Bender) and offer a hypothetical arrangement of their skeletal architecture.

All of the described conodont specimens are housed in the Faculty of Education and Human Sciences, Yokohama National University, Yokohama.

Apparatus reconstruction of Neospathodus symmetricus Orchard

On the basis of rich conodonts from the Taho Formation, I reconstruct multielement apparatuses of Neospathodus symmetricus and N. chionensis which are composed of eight types of elements: digyrate (cypridodelliform) M, alate S0, digyrate (enantiognathiform) S1, digyrate (grodelliform) S2, bipennate S3/4,
angulate P2, and segminate P1 elements. The apparatus nomenclature, S0 to S4, and P1 and P2, follows a proposal of Purnell et al. (2000).

The stratigraphic occurrence of *Neospathodus symmetricus* is restricted to the upper Spathian limestone in the Taho Formation (Figure 1). It ranges from the level at which *Icriospathodus collinsoni* (Solien) disappears through the Spathian-Anisian boundary at which *Chiosella timorensis* (Nogami) makes its debut.

The P1 element of *N. symmetricus* was proposed by Orchard (1995). Many specimens previously assigned to *N. homeri* P1 elements by several workers were regarded as *N. symmetricus* by Orchard (1995). Thus, previously described ramiform elements accompanied by *N. homeri* are possibly of the *N. symmetricus* apparatus.

Mosher (1968) recognized six species accompanied by *N. symmetricus* P1 elements [Mosher’s *N. cristagalli* (Huckriede)] and “*Cypridodella unialata*” (S2 element of *N. symmetricus*). Among the six species, “*Cypridodella conflexa* Mosher”, “*Diplododella magnidentata* (Tatge)”, “*Enantiognathus ziegleri* (Diebel)”, “*Prioniodina latidentata* Tatge”, and “*Ozarkodina tortilis* Tatge” are similar to the M, S0, S1, S3/4, and P2 elements of the *N. symmetricus* apparatus of this study, respectively, “*Diplododella magnidentata*”, “*P. latidentata*”, and “*O. tortilis*” were, however, originally described based on the material from the Middle Triassic Muschelkalk by Tatge (1956). Kozur (1976) and Orchard and Rieber (1999) regarded the mentioned form species as elements of the Middle Triassic *Neogondolella mombergensis* (Tatge) apparatus. “*Enantiognathus ziegleri*” is probably the S1 element of the late Ladinian conodont apparatus, *Meta- polygnathus* (*Budurovignathus*) *mungoensis* (Diebel) reconstructed by Mietto (1982). The holotype of “*Cypridodella conflexa* Mosher” was recovered from the upper Norian Hallstätter Kalk of Austria. All of the illustrated specimens of the six form species by Mosher (1968) are of Anisian age. Thus, the ramiform elements mentioned above are not part of the *N. symmetricus* apparatus.

Prior to Mosher (1968), Bender (1967) reported several Spathian conodont faunules accompanied by *N. homeri* and some ramiform elements from the island of Chios, Greece. Among three specimens illustrated as the species “*Apatognathus mitzopouli*” by Bender (1967), two of them agree morphologically with the S2 element of *N. symmetricus*. Bender’s holotype of “*A. mitzopouli*” differs, however, from the S2 element. Other species accompanied by *N. homeri* are “*Ozarkodina tortilis*”, “*Cypridodella muelleri* Tatge”, and “*Enantiognathus ziegleri*”. The illustrated specimens of these species are difficult to identify with the
Mosher (1973) proposed a multielement species Ellisonia sp. from the Spathian of Canada. Ellisonia sp. is composed of “Cypridodella unialata” (LC-element of Mosher, S2 element of N. symmetricus), “C. con-\textit{flexa}” (LA), “D. magnidentata” (U), and “Hinde\textit{della triassica} Mueller” (LB). Judging from Mosher’s figures, “D. magnidentata” is similar to the S0 element of N. symmetricus, but “C. conflexa” and “H. triassica” are dissimilar to the M and S3/4 elements of the species.

The multielement species Ellisonia \textit{clarki} of Sweet (1970) is similar to N. symmetricus. According to Sweet (1970), E. \textit{clarki} occurs in the Spathian of the Salt Range and Trans-Indus Range in Pakistan, and is composed of four kinds of elements. The elements of E. \textit{clarki}, U, LC, LA, and LB, correspond closely to the S0, S1, S2, and S3/4 elements of N. symmetricus. Sweet (1970), however, did not identify the LA element of E. \textit{clarki} with “C. unialata Mosher” (S2 element of N. symmetricus).

To sum up the above description, among eight element types of the N. symmetricus apparatus the P1 and S2 elements are identical to “N. symmetricus Orchard” and “C. \textit{unialata Mosher}”, respectively, but the other six types of elements are not identical to any previously proposed species with the exception of three elements (U, LC, and LB) of E. \textit{clarki} Sweet.

The number of elements of N. symmetricus occurring in each level of the upper Spathian limestone of the Taho Formation is shown in Table 1. The frequency of M, S0, S1, S2, S3, S4, P2, and P1 elements is 1048, 267, 988, 922, 962, 634, and 3736, respectively, and an approximate ratio of the elements is 2.3:0.6:2.1:2:2.1:1.4:8.1.

The ratio of the elements of M, S0, S1, S2, S3/4, P2, and P1 is 2:1:2:2:2:2:2:2 in a natural assemblage of Neogondolella sp. Rieber, 1980 (Orchard and Rieber, 1999) and in ozarkodinid apparatuses (e.g., Aldridge \textit{et al}., 1987; Purnell and Donoghue, 1998; Purnell \textit{et al}., 2000). Compared with the ratio of the elements in Neogondolella sp. and ozarkodinid apparatuses, P1 elements of N. symmetricus occur about four times as frequently as S2 elements. The high abundance of P1 elements is probably due to their robust constitution.

<table>
<thead>
<tr>
<th>level</th>
<th>S0</th>
<th>S1</th>
<th>S2</th>
<th>S3/4</th>
<th>P2</th>
<th>P1</th>
</tr>
</thead>
<tbody>
<tr>
<td>005'</td>
<td>38</td>
<td>31</td>
<td>14</td>
<td>45</td>
<td>45</td>
<td>30</td>
</tr>
<tr>
<td>1125</td>
<td>36</td>
<td>34</td>
<td>18</td>
<td>34</td>
<td>33</td>
<td>29</td>
</tr>
<tr>
<td>1124</td>
<td>20</td>
<td>12</td>
<td>4</td>
<td>14</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>1122</td>
<td>25</td>
<td>15</td>
<td>15</td>
<td>32</td>
<td>25</td>
<td>22</td>
</tr>
<tr>
<td>1191</td>
<td>9</td>
<td>14</td>
<td>7</td>
<td>13</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>1190</td>
<td>11</td>
<td>7</td>
<td>2</td>
<td>9</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>1189</td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1188</td>
<td>29</td>
<td>28</td>
<td>8</td>
<td>17</td>
<td>23</td>
<td>20</td>
</tr>
<tr>
<td>1187</td>
<td>30</td>
<td>39</td>
<td>14</td>
<td>23</td>
<td>27</td>
<td>20</td>
</tr>
<tr>
<td>1658</td>
<td>10</td>
<td>7</td>
<td>9</td>
<td>10</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>1657</td>
<td>17</td>
<td>16</td>
<td>8</td>
<td>18</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>1656</td>
<td>27</td>
<td>27</td>
<td>10</td>
<td>26</td>
<td>18</td>
<td>25</td>
</tr>
<tr>
<td>1655</td>
<td>36</td>
<td>25</td>
<td>20</td>
<td>29</td>
<td>40</td>
<td>33</td>
</tr>
<tr>
<td>1654</td>
<td>12</td>
<td>16</td>
<td>14</td>
<td>9</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>1653</td>
<td>19</td>
<td>19</td>
<td>12</td>
<td>17</td>
<td>20</td>
<td>11</td>
</tr>
<tr>
<td>1651</td>
<td>16</td>
<td>16</td>
<td>7</td>
<td>14</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>1650</td>
<td>16</td>
<td>12</td>
<td>4</td>
<td>10</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>1649</td>
<td>21</td>
<td>20</td>
<td>20</td>
<td>23</td>
<td>17</td>
<td>19</td>
</tr>
<tr>
<td>1648</td>
<td>19</td>
<td>20</td>
<td>10</td>
<td>16</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>1647</td>
<td>48</td>
<td>42</td>
<td>19</td>
<td>35</td>
<td>34</td>
<td>39</td>
</tr>
<tr>
<td>1646</td>
<td>86</td>
<td>89</td>
<td>36</td>
<td>94</td>
<td>63</td>
<td>74</td>
</tr>
<tr>
<td>1645</td>
<td>12</td>
<td>8</td>
<td>11</td>
<td>19</td>
<td>18</td>
<td>13</td>
</tr>
<tr>
<td>total</td>
<td>544</td>
<td>504</td>
<td>267</td>
<td>514</td>
<td>474</td>
<td>461</td>
</tr>
<tr>
<td></td>
<td>1048</td>
<td>267</td>
<td>988</td>
<td>922</td>
<td>962</td>
<td>634</td>
</tr>
<tr>
<td>%</td>
<td>12.2</td>
<td>3.1</td>
<td>11.5</td>
<td>10.8</td>
<td>11.2</td>
<td>7.4</td>
</tr>
<tr>
<td>ratio</td>
<td>2.3</td>
<td>0.6</td>
<td>2.1</td>
<td>2.1</td>
<td>2.1</td>
<td>1.4</td>
</tr>
</tbody>
</table>

Table 1. Occurrence of M, S0, S1, S2, S3/4, P2, and P1 elements of Neospathodus symmetricus Orchard obtained from 2 to 3 kg of limestone of the Taho Formation.
Similar occurrence of P1 elements is also recognized in the case of *Cratognathodus kochi* (Huckriede) (revised from *C. multihamatus* (Huckriede) of Koike, 1999) in the Taho Formation. The frequency of S0 and S3/4 elements is about half of what could be expected among ramiform elements. The low abundance of S0 and S3/4 elements is probably due to their fragility. I regard the *N. symmetricus* apparatus as composed of a single unpaired S0, single pairs of M, S1, S2, S3, S4, P2, and P1 elements. The S3 and S4 elements are not distinguished from each other, because they show various transitional forms. Thus, I treat two single pairs of S3 and S4 elements as S3/4 herein.

Neospathodus symmetricus occurs in the upper Spithian strata in the Taho Formation and is accompanied by two or three other species of *Neospathodus* in most levels. Table 2 shows the occurrence of the segminate P1 elements and neospathid ramiform elements associated with *N. symmetricus* (Table 1), except for *N. chionensis* (Table 3) and *N. sp. B* mentioned on page 134.

The ramiform elements listed in Table 2 are probably of *Neospathodus abruptus* Orchard (Figure 2). The S1, S2, and S3/4 elements are characterized by possession of thin and broad processes, and numerous denticles on the processes. The M elements possess a

Table 2. Occurrence of P1 elements of *Neospathodus abruptus* Orchard, *N. brochus* Orchard, *N. curtatus* Orchard, *N. sp. A*, and *N. spp.* and ramiform elements probably of *N. abruptus*. These elements were obtained from 2 to 3 kg of limestone of the Taho Formation. Occurrence of *N. symmetricus* and *N. chionensis* is shown in Tables 1 and 3, respectively.

<table>
<thead>
<tr>
<th>elements</th>
<th>Neospathodus abruptus?</th>
<th>N. abruptus</th>
<th>N. brochus</th>
<th>N. curtatus</th>
<th>N. sp. A</th>
<th>N. spp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>level</td>
<td>M</td>
<td>S0</td>
<td>S1</td>
<td>S2</td>
<td>S3/4</td>
<td>P2</td>
</tr>
<tr>
<td>005</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>1125</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>1124</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1126</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>1191</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1190</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>1189</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>1188</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>1187</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1658</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>1657</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>1656</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>1655</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>1654</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>1653</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>1651</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>1650</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1619</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>1618</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1617</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>1616</td>
<td>8</td>
<td>3</td>
<td>3</td>
<td>10</td>
<td>17</td>
<td>8</td>
</tr>
<tr>
<td>1614</td>
<td>26</td>
<td>23</td>
<td>67</td>
<td>45</td>
<td>68</td>
<td>31</td>
</tr>
<tr>
<td>total</td>
<td>87</td>
<td>48</td>
<td>98</td>
<td>95</td>
<td>159</td>
<td>102</td>
</tr>
</tbody>
</table>

Table 3. Occurrence of M, S0, S1, S2, S3/4, P2 and P1 elements of *Neospathodus chionensis* (Bender) obtained from 1 and 10 kg limestone of Levels 1649 and 1614, respectively of the Taho Formation.

<table>
<thead>
<tr>
<th>element</th>
<th>M</th>
<th>S0</th>
<th>S1</th>
<th>S2</th>
<th>S3/4</th>
<th>P2</th>
<th>P1</th>
</tr>
</thead>
<tbody>
<tr>
<td>level</td>
<td>S</td>
<td>D</td>
<td>S</td>
<td>D</td>
<td>S</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>1649</td>
<td>10</td>
<td>12</td>
<td>4</td>
<td>7</td>
<td>5</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>1614</td>
<td>52</td>
<td>57</td>
<td>63</td>
<td>54</td>
<td>50</td>
<td>55</td>
<td>56</td>
</tr>
<tr>
<td>total</td>
<td>62</td>
<td>69</td>
<td>67</td>
<td>62</td>
<td>55</td>
<td>60</td>
<td>64</td>
</tr>
<tr>
<td>ratio</td>
<td>0.92</td>
<td>1.03</td>
<td>1</td>
<td>0.92</td>
<td>0.82</td>
<td>0.9</td>
<td>0.96</td>
</tr>
<tr>
<td>1649</td>
<td>124</td>
<td>174</td>
<td>109</td>
<td>132</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>131</td>
<td>67</td>
<td>117</td>
<td>124</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ratio</td>
<td>2</td>
<td>1</td>
<td>1.7</td>
<td>1.9</td>
<td>2.6</td>
<td>1.6</td>
<td>2</td>
</tr>
</tbody>
</table>
relatively long outer lateral process with 5 to 6 denticles, and the P2 elements have a relatively short posterior process with 2 to 4 denticles. I will describe *N. abruptus* in detail in the near future.

The P1 element of *Neospathodus sp. A* is quite similar to that of *N. symmetricus* in outline of the unit and denticulation, but it possesses a very narrow slitlike basal cavity (Figure 2). These elements, however, probably fall within the range of intraspecific variation of *N. symmetricus* P1 elements, because the degree of expansion of the basal cavity seems to be more variable than that described by Orchard (1995).

Unfortunately, it is impossible to discriminate the ramiform elements of *N. symmetricus* listed in Table 1 may include a small number of elements of *Neospathodus brochus* Orchard, *N. curtatus* Orchard, and *N. spp.*

Apparatus reconstruction of *N. chionensis* (Bender)

The occurrence of *Neospathodus chionensis* is entirely restricted within about a 50 cm-thick ammonoid-bearing bed above the level where *Icriospathodus collinsoni* (Solien) disappears.

The M element is identical with "*Ctenognathus chionensis*" of Bender (1967). According to Bender, "*C. chionensis*" occurs in the upper Scythian of the island of Chios, Greece. "*Ctenognathus chionensis*" is accompanied by P1 elements of *Neospathodus homeri* (Bender) and *N. triangularis* (Bender), and nine or ten types of ramiform elements. Bender (1967) illustrated one specimen of a *Neospathodus homeri* P1 element (plate 5, figure 18) associated with "*C. chionensis*".
The illustrated specimen cannot be assigned to *N. homerii* but it is certainly a Spathian *Neospathodus* and similar to P1 elements of a species of *Neospathodus* associated with *N. chionensis* in the Taho Formation. This species (*Neospathodus* sp. B) seems to possess eight types of elements that are characterized by large stout processes with isolated denticles. *Neospathodus* sp. B is restricted in occurrence in Level 1614 and easily distinguished from *N. chionensis*, *N. symmetricus*, *N. abruptus* and other *Neospathodus* species obtained from the level. Therefore, the frequency of elements of *N*. sp. B (25 specimens of P1 elements) is not listed in Table 2.

As far as I know, none of the seven types of elements including the neopathodiform P1 in the *N. chionensis* apparatus has been described. As mentioned above, the occurrence of this apparatus is restricted within a 50 cm-thick-bed. Thus, it is impossible to increase the reliability of the reconstruction on the basis of comparison of the occurrence of elements in various levels. I regard the reconstruction of *N. chionensis* as reasonable on the basis of the following facts: all the eight types of elements are characterized by possession of stout process with discrete denticles. Furthermore, their ratio of occurrence is not so different from that in a neoegondolellid natural assemblage, as mentioned below.

The number of elements of *N. chionensis* obtained from two levels is listed in Table 3. The frequency of M, S0, S1, S2, S3/4, P2, and Pt elements is 131, 67, 117, 124, 174, 109, and 132, respectively, and an approximate ratio of the elements is 2:1:1.7:1.9:2.6:1.6:2. Consequently, I regard *N. chionensis* as a multielement apparatus composed of a single unpaired S0, single pairs of M, S1, S2, S3, S4, P2, and P1 elements. The S3 and S4 elements are also indistinguishable from each other as in the case of *N. symmetricus*.

The eight types of elements of *N. chionensis* and *N. symmetricus* apparatuses are very similar to each other in morphology. The presence of digyrate (enantioignathiform) S1 and digyrate (grodelliform) S2 elements in these apparatuses is common to *Neogondolella* (Orchard and Rieber, 1999) and *Cratognathodus kochi* (Huckriede) of Koike (1999). The apparatus structure of *Neospathodus* is comparable to the standard 15-element plan of ozarkodinids (Purnell and Donoghue, 1998; Purnell et al., 2000).

Systematic paleontology

Class Conodonta
Order Ozarkodinida
Superfamily Gondolellacea
Family Gondolellidae
Genus *Neospathodus* Mosher, 1968

Type species. — *Spathognathodus cristagalli* Huckriede, 1958.

Neospathodus chionensis (Bender, 1967)

Figure 5. 1–25

M element

Ctenognathus chionensis Bender, 1967, p. 503–504, pl. 1, figs. 13, 15, 16.

Diagnosis. — *Neospathodus chionensis* (Bender, 1967) is composed of single pairs of digyrate (cypridelliform) M, digyrate (enantioignathiform) S1, digyrate (grodelliform) S2, bipennate S3/4, angulate P2, and segminate P1 elements, and a single unpaired alate S0 element. These elements are characterized by possession of stout processes and relatively discrete thick denticles.
Description.—P1 element: Unit is stout, and ranges from 480 μm to 980 μm in length and from 240 μm to 530 μm in height. Ratio of length and height is 1.5–1.8:1. Denticles are 10 to 12 in number, subequal-sized, and upright in anterior and reclined in posterior portions. Upper surface of basal cup is thick on inner side. Basal cavity broadly expanded and quadrate to triangular in outline.

P2 element: Anterior and posterior processes are almost equal in length and range from 240 μm to 370 μm and 250 μm to 380 μm in length, respectively. Both processes meet at an angle of about 140 to 160 degrees in upper view and 160 to 170 degrees in lateral view. Denticles on anterior process 5 to 7 in number, fused, and long, and tend to increase in height and inclination posteriorly. Denticles on posterior process 5 to 7 in number, discrete, short, and almost equal in size. Cusp is subequal to or much larger than largest denticles on anterior process. Basal cavity is slitlike and narrow groove extends toward anterior and posterior from basal cavity.

M element: Outer- and inner-lateral processes range from 210 μm to 470 μm and from 790 μm to 910 μm in length, respectively. Both processes meet at an angle of 120 to 150 degrees in lateral view. Outer-lateral process projects upward and flexed anteriorly and carries 1 to 5 relatively large discrete denticles. Inner-lateral process projects downward and curves posteriorly in distal portion. Denticles on inner-lateral process 12 to 15 in number, and tend to be long in middle portion and gradually increase in inclination proximally. Cusp is subequal to twice as long as largest denticle on processes. Basal cavity is small and triangular in shape with fine lip on inner side. Basal groove not observed.

S0 element: Posterior process ranges from 510 μm to 780 μm in length. Each lateral process ranges from 270 μm to 430 μm in length. Lateral processes meet at cusp or first denticle anterior of cusp, and form an angle of 90 to 160 degrees to each other in antero-posterior view and 90 to 160 degrees on anterior side in upper view. Denticles on each lateral process 3 to 5 in number, discrete, and relatively large. Denticles on posterior process 7 to 10 in number, discrete, and increase in length and inclination posteriorly. Cusp large and may attain three times the length of the largest.
denticle on the lateral processes. Basal cavity indistinct and basal groove unobserved.

S1 element: Outer-lateral process ranges from 280 µm to 710 µm in length. Inner-lateral process ranges from 290 µm to more than 630 µm in length and is slightly longer than outer-lateral process. Both processes meet at cusp with an angle of about 60 degrees on upper view. Outer-lateral process ranges from 190 µm to 390 µm in height of blade, and somewhat convex inward. Inner-lateral process very low in height of blade, thin, and projects toward posterior and then curves and extends laterally. Denticles on outer-lateral process 7 to 11 in number, discrete, and tend to be large in proximal to medial portion and in-...

Neospathodus symmetricus Orchard, 1955

Figure 6. 1–38

P1 element

\[\text{Neospathodus symmetricus} \] Orchard, 1995, p. 120, 121, figs. 2.6, 2.10–2.13, 2.18.

S0 element

Ellisionia clarki Sweet, 1970, p. 225, 226, pl. 4, figs. 17, 18. [U element]

S1 element

Ellisionia clarki Sweet, 1970, p. 225, 226, pl. 4, fig. 15. [LC element]

S2 element

Apatognathus mitzopouli Bender, 1967, p. 501, pl. 1, figs. 11, 14 (only)

Cypridodella unialata Mosher, 1968, p. 922, pl. 113, figs. 21, 27.

Ellisionia clarki Sweet, 1970, p. 225, 226, pl. 4, fig. 16. [LA element]

S3/4 element

Ellisionia clarki Sweet, 1970, p. 225, 226, pl. 4, fig. 19. [LB element]

Diagnosis.—Neospathodus symmetricus Orchard, 1995 is composed of single pairs of digyrate (cypridodelliform) M, digyrate (enantiognathiform) S1, digyrate (grodelliform) S2, bipennate S3/4, angulate P2, and segminate P1 elements, and a single unpaired alate S0 element. These elements are characterized by having a thin blade with fused denticles.

Description.—P1 element: Unit ranges from 260 µm to 790 µm in length and from 140 µm to 470 µm in height, respectively. Ratio of length and height is 1.5–2:1. Posterior and anterior ends may slightly curve inward. Denticles 8 to 15 in number, almost equal in size, and upright in anterior portion and increasingly reclined toward posterior. Basal cavity is broadly to narrowly expanded and basal groove extends toward anterior end.

P2 element: Anterior and posterior processes range from 130 µm to 350 µm and from 150 µm to 500 µm in length, respectively. Anterior process is commonly higher than posterior one. Both processes meet at an
angle of 130 to 160 degrees in lateral view and 120 to 150 degrees in upper view. Denticles on anterior process 4 to 9 in number and increase in size and inclination posteriorly. Denticles on posterior process are 4 to 8 in number, and increase in size and inclination posteriorly. The ratio of number of denticles on anterior process to that on posterior one is 1:0.7–1.5. Cusp is larger than largest denticle on anterior process. Basal cavity minute and basal groove unobserved.

M element: Outer- and inner-lateral processes range from 50 \(\mu \text{m} \) to 210 \(\mu \text{m} \) and from 280 \(\mu \text{m} \) to 890 \(\mu \text{m} \) in length, respectively. Both processes meet at an angle of 60 to 120 degrees in lateral view. Outer-lateral process slightly flexed anteriorly and carries 1 to 5 short denticles. Inner-lateral process projects downward and curves posteriorly, and carries 14 to 20 equal-sized fused denticles. Cusp is twice to three times as long as denticle on inner-lateral process. Basal cavity minute and basal groove unobserved.

S0 element: Posterior process ranges from 330 \(\mu \text{m} \) to 630 \(\mu \text{m} \) in length. Lateral processes meet at cusp or the first or second denticle anterior of cusp and form an angle of 90 to 120 degrees in antero-posterior view and 120 to 170 degrees on anterior side in upper view. Denticles on each lateral process 2 to 3 in number, small, and fused. Denticles on posterior process 16 to 20 in number, fused, and increase in length and inclination posteriorly. Cusp is equivalent to or slightly larger than largest denticle on posterior process. Basal cavity indistinct and basal groove unobserved.

S1 element: Outer- and inner-lateral processes range from 190 \(\mu \text{m} \) to 410 \(\mu \text{m} \) and from 150 \(\mu \text{m} \) to 540 \(\mu \text{m} \) in length, respectively, and meet at cusp with an angle of about 60 degrees in upper view, and project downward. Outer-lateral process is deep and ranges from 280 \(\mu \text{m} \) to 370 \(\mu \text{m} \) in height of blade, and slightly convex inward. Inner-lateral process is thin, about 85 \(\mu \text{m} \) in height of blade, and directed toward posterior and then flexed and extending laterally. Denticles on outer-lateral process 10 to 16 in number, fused, incline proximally and inward, and form a high convex crest in distal to medial portion. Denticles on inner-lateral process up to 20 in number, small, and tend to increase in inclination and size distally. Cusp is slightly larger than largest denticle on anterior process. Basal cavity indistinct and basal groove unobserved.

S2 element: Outer-lateral process ranges from 290 \(\mu \text{m} \) to 530 \(\mu \text{m} \) in length and from 140 \(\mu \text{m} \) to 220 \(\mu \text{m} \) in height of blade, and extends downward approximately in parallel with axis of cusp. Denticles on outer-lateral process 15 to 20 in number, fused, subequal in size, and tend to increase in inclination proximally. One to three small denticles may be present on inner-lateral process. Cusp is subequal to twice as long as largest denticle on outer-lateral process. Basal margin near cusp curves shallowly to deeply. Basal cavity indistinct and basal groove unobserved.

S3/4 elements: Anterior and posterior processes range from 150 \(\mu \text{m} \) to 370 \(\mu \text{m} \) and from 420 \(\mu \text{m} \) to 1010 \(\mu \text{m} \) in length, respectively. Anterior process bends inward with an angle of 10 to 45 degrees and projects downward with an angle of 10 to 45 degrees. Denticles on anterior process range from 6 to 10 in number and tend to increase in size and decrease in inclination anteriorly. Denticles on posterior process range from 15 to 25 in number and tend to increase in size and inclination posteriorly. Cusp is subequal to twice as large as largest denticle on anterior process. Basal cavity indistinct and basal groove unobserved.

Remarks.—According to Orchard (1995), N. symmetricus is distinguished from N. homeri by having a shorter unit, fewer and more strongly reclined denticles, a more symmetrical basal cavity, and lacking a denticulate posterior process. P1 elements of N. symmetricus of the Taho Formation are identical to N. symmetricus described by Orchard (1995) in morphological characteristics. The segminate P1 elements of N. homeri revised by Orchard (1995) are entirely absent in the Taho Formation.

Neospathodus sp. aff. N. symmetricus Orchard, the
biostratigraphic occurrence of which is lower than that of *N. symmetricus* (Figure 1), resembles *N. symmetricus*, but it is distinguished from the latter in possessing a shorter P1 element with fewer denticles, and circular outline of the basal cup (Figure 2). The apparatus of this species probably consists of eight kinds of elements, the M element of which is distinguishable from that of *N. symmetricus* while the others are closely similar to those of the species.

On the basis of the morphological similarity of the P1 elements between *Neospathodus* and *Neo-
gondolella*, Kozur (1976) and Sweet (1981) suggested that the two genera are phylogenetically related to each other. The common presence of enantiognathiform S1 and gondelliform S2 elements in the *Neo-
spathodus* apparatuses and the natural assemblage of *Neogondolella* sp. Rieber, 1980 (Orchard and Rieber, 1999) provides an additional evidence for the view of Kozur (1976) and Sweet (1981).

Acknowledgments

I would like to express my sincere appreciation to Hisayoshi Igo, Emeritus Professor of Institute of Geosciences, University of Tsukuba, for his critical reading of the manuscript and valuable suggestions. I would like to acknowledge Peter von Bitter of Department of Palaeontology, Royal Ontario Museum, Canada and Mark A. Purnell of Department of Geology, University of Leicester, U.K. for their constructive comments on this manuscript.

References cited

Mietto, P., 1982: A Ladinian conodont-cluster of *Metapol
gnathodus mungoensis* (Diebel) from Trento area (NE Italy). *Neues Jahrbuch für Geologie und Paläontologie, Monatshefte*, 1982, p. 600–606.

Tatge, U., 1956: Conodonten aus dem germanischen Mu
tenzonen (Kreide). *Zeitschrift für Geologie und Pala