A natural assemblage of Ellisonia sp. cf. E. triassica Müller (Vertebrata: Conodonta) from the uppermost Permian in the Suzuka Mountains, central Japan

Authors: Koike, Toshio, Yamakita, Satoshi, and Kadota, Naoki

Source: Paleontological Research, 8(4) : 241-253

Published By: The Palaeontological Society of Japan

URL: https://doi.org/10.2517/prpsj.8.241
A natural assemblage of *Ellisonia* sp. cf. *E. triassica* Müller (Vertebrata: Conodonta) from the uppermost Permian in the Suzuka Mountains, central Japan

TOSHIO KOIKE¹, SATOSHI YAMAKITA² AND NAOKI KADOTA³

¹36-6-606 Tokiwadai, Hodogaya-ku, Yokohama City 240-0067, Japan
²Department of Earth Science, Faculty of Education and Culture, Miyazaki University, Miyazaki 889-2192, Japan
³Miyazaki Prefectural Museum of Nature and History, 2-4-4 Jingu, Miyazaki 880-0053, Japan

Received January 15, 2004; Revised manuscript accepted September 28, 2004

Abstract. A natural assemblage of *Ellisonia* sp. cf. *E. triassica* Müller was recovered from the uppermost Permian close to the Permian-Triassic boundary in the Nabejiriyama section in the Mt. Ryozen area, Suzuka Mountains, central Japan. This natural assemblage and collections of similar ellisonids from the Taho Formation of Ehime Prefecture, southwestern Japan, demonstrate that the *Ellisonia* apparatus is composed of eight kinds of elements: breviform digyrate M, symmetrical S₀, extensiform digyrate S₁ and S₂, bipennate S₃ and S₄, and angulate P₁ and P₂ elements. The apparatus structure of *Ellisonia* is comparable to the standard 15-element plan of Carboniferous ozarkodinids and prioniodinids. The apparatus structure of the present natural assemblage is important in discussing the phylogenetic affinity of the genus *Ellisonia*.

Key words: Conodonta, *Ellisonia*, Japan, Mt. Ryozen area, Nabejiriyama section, natural assemblage, Permian and Triassic boundary

Introduction

A natural assemblage of *Ellisonia* sp. cf. *E. triassica* Müller was discovered in siliceous claystone of the Nabejiriyama (Mt. Nabejiri) section, one of the large blocks in the Nishizaka Unit, exposed in the Mt. Ryozen area, in the northernmost Suzuka Mountains, Shiga Prefecture, central Japan. The Nabejiriyama section consists of an about 4-m thickness of strata of deep-sea origin in which the Permian-Triassic boundary is present.

The apparatus of *Ellisonia* (Carboniferous-Triassic) was reconstructed as a multimembrate apparatus with two to six kinds of elements (Sweet, 1970, 1981; von Bitter and Merrill, 1983; Koike, 1990). The discovery of a natural assemblage of *Ellisonia* in the Nabejiriyama section and intensive study of ellisonids from the Taho Formation of Ehime Prefecture demonstrate that the following eight kinds of elements constitute the *Ellisonia* apparatus: breviform digyrate M, triramous alate S₀, extensiform digyrate S₁ and S₂, bipennate S₃ and S₄, and angulate P₁ and P₂ elements.

The purpose of this paper is (1) to determine the exact age of the natural assemblage, (2) to describe the arrangement of elements in the natural assemblage, (3) to compare the natural assemblage with the previously reconstructed Carboniferous to Triassic ellisonids, (4) to describe the individual elements of the natural assemblage, (5) to indicate the characteristics of the component elements of the *Ellisonia* apparatus, and (6) to discuss the phylogenetic relationships between *Ellisonia* and other taxa.

Geologic setting

The strata of the Nabejiriyama section were included in the Ryozensan Formation of the Kitasuzuka Group of Lower Permian age (Miyamura *et al*., 1976). The Kitasuzuka Group was regarded as a Jurassic accretionary complex in the Mino Belt and divided into two tectonostratigraphic units by Yamagata (2000): the Kitasuzuka Unit composed of various-sized disrupted masses of Permian oceanic rocks of basalt and volcanioclastic rock, limestone, and chert; and the Nishizaka Unit composed of melange with mudstone matrix containing blocks of basaltic rock, limestone, chert, and sandstone. The rock of the Nabejiriyama section is one of the large blocks in the Nishizaka...
Unit. It consists of chert and claystone representing an ocean-floor sequence (Kuwahara, 1997).

The Nabejiriyama section is exposed in a road cut on the Shirodani forestry road in the Shirodani Valley, east of Nabejiriyama (Figure 1). This road cut is about 8 m long and 4 m high, where bedded chert with subordinate amounts of claystone is continuously exposed. The beds strike NNE to NS and dip 80°/C14 to 86°/C14 E or W (Figure 2).

Ishiga et al. (1982a) recognized two Upper Permian radiolarian zones in this section (section I): the upper Neoalbaillella ornithoformis and the lower N. optima Assemblage Zones. Kuwahara et al. (1998), however, pointed out that these two assemblage zones were reversed; overturned based on their studies of Late Permian radiolarians in the Gujohachiman area of the Mino Belt. This conclusion is supported by the occurrence of Middle Permian radiolarians in bedded chert exposed about 30 m southwest of the Nabejiriyama section (Ishiga et al., 1982b). Yao et al. (2001) studied conodonts recovered from the strata of the Nabejiriyama section I (Figure 2) and determined them to be Changhsingian in age.

One of us (S. Y.) made a detailed stratigraphic study of the Nabejiriyama section II (Figure 2) and established the succession shown in Figure 3. The lower part of the section (Beds Rz-4 to Rz-12) consists of 55-cm-thick alternating beds of gray chert and gray siliceous claystone. The upper part (Bed Rz-1 and Rz-2) is composed of 18-cm-thick black carbonaceous claystone. A particular characteristic of the sequence is that a 3-cm-thick black claystone with laminae of gray siliceous claystone (Bed Rz-3) intercalates between the lower and upper parts of the sequence (Figure 3). As will be discussed, the Permian-Triassic boundary is provisionally placed immediately above this bed.

Two of us (S. Y. and N. K.) continued to attempt to recover microfossils from the strata. As a result, a latest Permian radiolarian, Albaillella triangularis Ishiga et al., was recovered from Bed Rz-9; latest Permian conodonts, Neogondolella changxingensis Wang and Wang, N. subcarinata Sweet, and a latest Permian to earliest Triassic conodont, Hindeodus typicalis (Sweet) were recovered from Bed Rz-4; the natural
assemblage of *Ellisonia* sp. cf. *E. triassica* was discovered from Bed Rz-3; and *Hindeodus typicalis* was obtained from Bed Rz-2 (Figure 3).

Our micropaleontological data are not entirely sufficient to settle a more detailed geochronology of this section, however, a previous study by Yamakita *et al.* (1999) causes us to conclude that this section apparently includes the Permian-Triassic boundary beds. Yamakita *et al.* (1999) intensively studied a sequence of the uppermost Permian to the lowermost Triassic in the Ubara section of the Hukuchiyama area, in the Tamba Belt. The stratigraphic succession of the Ubara section exhibits close similarity to that of the present section. The micropaleontological evidence found in the Ubara section is noteworthy. In the Ubara section, *Hindeodus parvus* Kozur and Pjatakova was recovered from black claystone that is lithologically identical with Bed Rz-2 of the Nabejiriyama section. The gray siliceous claystone in the Ubara section, which is a correlative of Bed Rz-4 in the Nabejiriyama section, yielded a latest Permian conodont, *Neogondolella changxingensis*.

The first occurrence of *Hindeodus parvus* defines the base of the Triassic (Paull and Paull, 1994; Orchard *et al.*, 1994; Yin *et al.*, 1996). Thus, Bed Rz-2 is correlated with the Griesbachian. It is not certain, however, whether the Permian and Triassic boundary should be placed at the base of Bed Rz-2 or Bed Rz-3, because paleontological data are not sufficient to define the age of Bed Rz-3. We provisionally interpret that the base of the Triassic coincides with the base of Bed Rz-2, and the natural assemblage of *Ellisonia* sp. cf. *E. triassica* occurs immediately below the Permian-Triassic boundary.

Components of the natural assemblage

Conodonts are generally rare in the claystone of Bed Rz-3. Individual elements are found sporadically scattered on the bedding plane surface and seem to be restricted to a specific bedding plane. The only natural assemblage recovered is not well preserved due to dissolution of the surface of elements and development of fine fractures (Figure 4).
The original alignment and the counterpart of the natural assemblage can be observed on part (MPC02627, Micropaleontology Collection, National Science Museum, Tokyo) and counterpart (MPC02628) (Figures 4A and 4B), respectively. Preservation of the natural assemblage, with weak post-mortem disruption, enables direct comparison of element arrangement and recognition of homologous relationships with the ozarkodinid apparatuses (e.g., Aldridge et al., 1987; Purnell and Donoghue, 1998).

Of the eleven elements on the bedding plane, eight elements (apparatus nomenclature of Purnell et al., 2000): the triramous S0, extensiform digyrate S1 (sinistral S1 element), extensiform digyrate S2, bipennate S3 (dextral S3 element), angulate P2 and P2, and the angulate P1 and P1, are aligned almost parallel to each other, but others (the S1, S2, and bipennate S4 elements) make an angle of about 90° with the eight elements. The S0 element covers the S1 element. The anterior part of the S2 element is overlain by the posterior part of the S1 element. The S2 element is overlain at the tips of the denticles by the process of the S1 element. The P2 elements overlie a part of the S3 element. The P1 elements lie posterior of the S3 element and the P1 element overlies the P2 element. The S4 element lies posterior of the P1 elements.

The S3 and S4 elements are most likely to lie underneath on the left side of the S2 and P2 elements. A part of the denticles and cusp of the elements are observed in those positions. The M elements are not observed. They are most likely to lie beneath on the left side of the S0 element and on the right side of the S1 element.

The S0, S2, S3, and S4 elements of the natural assemblage are morphologically similar to Ellisonia triassica, Lonchodina triassica, Hindeodella nevadensis, and H. raridenticulata all first described by Müller (1956). These species were regarded the elements of the Ellisonia triassica apparatus by Sweet (1970, 1981, 1988). Furthermore, the P1 and P2 elements of the natural assemblage are also similar to the Pa and Pb elements of the E. triassica apparatus reconstructed from discrete elements (Figure 7). Ellisonia triassica and other species of Ellisonia previously described are reviewed in the following chapters.

Review of Ellisonia triassica Müller

Ellisonia triassica was proposed as the type species of *Ellisonia* by Müller (1956) for the alate S0 element from the Meekoceras Zone of Smithian age in Nevada. Sweet (1970) reconstructed *E. triassica* as a multielement apparatus composed of four kinds of elements, U (*E. triassica*), LA (*Hibbardella subsymmetrica* Müller), LF (*Lonchodina triassica*), and LB (*Hindeodella nevadensis* and *H. raridenticulata*), based on the
material from the uppermost Permian and Lower Triassic of Pakistan. Sweet (1981, 1988) subsequently concluded that the apparatus of *E. triassica* was composed of breviform digyrate M (LA element of Sweet, 1970), alate Sa (U), extensiform digyrate Sb (LF), and bipennate Sc (LB), breviform digyrate Pb, and angulate Pa elements.

Swift and Aldridge (1982) reported a prioniodinan (Pb) element of *E. cf. triassica* from the Upper Permian of North Yorkshire.

Von Bitter and Merrill (1983) identified three kinds of elements of *E. triassica*, Tr (Sa), Pl (M), and Hi (Sc), based on the material from the *Meekoceras* Zone in Idaho. Von Bitter and Merrill (1985) emphasized that *E. triassica* is a ramiform – only apparatus.

T. Koike, in this study, examined the apparatus of *Ellisonia triassica* recovered from the limestone core sample at 12.70–12.90 m depth in the Taho Formation. These conodont elements include *Neospathodus bransoni* (Mueller), *N. conservativus* (Muller), *N. discretus* (Muller), and *N. dieneri* Sweet. The former three *Neospathodus* species are accompanied by *E. triassica* in the *Meekoceras* Zone conodont faunule from Nevada described by Muller (1956). Therefore,
the conodont faunule in drill core of Taho has almost
the same element composition as that reported by
Müller (1956).

As a result of the examination of the Taho con-
odont faunule, the following eight kinds of elements
are distinguished for the *E. triassica* apparatus, M, Sa,
Sb1, Sb2, Sc1, Sc2, Pa, and Pb (Figure 7). Of these ele-
ments, M, Sa, Sb, and Sc1/2 are identical to M, Sa, Sb
and Sc of *E. triassica* of Sweet (1981, 1988), respec-
tively. Pa elements are rather different in morphology
from the Pa element of *E. triassica* illustrated by
Sweet (1981, 1988), respectively. Pb elements are ozarkodiniform
angulate and significantly different in morphology
from the breviform digyrate Pb element of *E. triassica*

Review of Triassic species of Ellisonia

Koike (1990) attempted to reconstruct *E. triassica*
on the basis of conodont elements from three levels of
the Taho Formation and identified three kinds of ele-
ments, M (= Pb element of Koike, 1990), Sa, and Sc
elements. Of the three sampled levels, levels 03 and
1113 are about 7 m below the boundary of the Smith-
ian and Spathian and are almost identical to the
conodont elements from the drill core sample. Besides
the M, Sa, and Sc elements, Sb1, Sb2, Pa, and Pb of *E.
triassica* were recently recognized in levels 03 and
1113.

Of the three sampled levels, level 103A is just below
the Smithian-Spathian boundary and the conodont
composition is quite different from those of levels 03,
1113, and the drill core sample. Level 103A yielded
numerous elements of *Ellisonia* sp. and only a few Pa
elements of *Neospathodus* sp. All elements of *E. tri-
assica* illustrated by Koike (1990) were from level
103A. Elements illustrated on the figures of Koike
(1990) and Figure 8 of this paper demonstrate that the
elements identified as Sa, M and Sc are similar to
those of *E. triassica* described by Müller (1956) and
Sweet (1970). The Sb1, Sb2, Pa, and Pb elements are,
however, significantly different in morphology from
those of *E. triassica* (Figure 7) from Taho. The Sb1
elements are extensiform digyrate, with a high and
intensely curved unit. The Sb2 elements are extensi-
form digyrate, with a high unit. The Pa and Pb ele-
ments are angulate, without a distinct cusp. Thus, the
ellisonid species at level 103A should be removed
from *E. triassica* and tentatively referred to *E. sp. aff.
E. triassica* Müller in this paper (Figure 8).

A Smithian *Ellisonia* species, *E. agordina* proposed
by Perri and Andraghetti (1987), has six kinds of ele-
ments, M, Sa, Sb, Sc, Pa, and Pb. These elements are
characterized by having a relatively short unit with an
inflated rib and blunt discrete denticles. The six kinds
of elements of *E. agordina* are easily distinguished
from those of *E. triassica*. It is noteworthy, however,
that the individual elements of *E. agordina* and *E. tri-
assica* are basically similar in morphology.

Consequently, the apparatuses of Triassic *Ellisonia*
are composed of the following eight kinds of elements:
breviform digyrate M, triramous Sa, intensely arched
or curved extensiform digyrate Sb1, gently arched ex-
tensiform digyrate Sb2, bipennate Sc1 and Sc2, and

Figure 7. *Ellisonia triassica* Müller, 1956 from the Taho Formation, Shirokawa-cho, Higashiura-gun, Ehime Prefecture. All × 60.
From carbonate in borehole at 12.70–12.90 m. 1. M element, MPC02629. 2, 3. Sa (S0) elements, MPC02630, 02631. 4. Sb (S1) element, MPC02632. 5. Sb (S2) element, MPC02633. 6. Sc (S3) element, MPC02634. 7. Sc (S4) element, MPC02635. 8. Pb (P2) element, MPC02636. 9, 10. Pa (P1) elements, MPC02637, 02638.
angulate Pa and Pb. The apparatus structure of Triassic species of Ellisonia is comparable to the standard 15-element plan of ozarkodinids (Purnell and Donoghue, 1998; Purnell et al., 2000), prioniodinids (Purnell, 1993), and gondolellids (Rieber, 1980; von Bitter and Merrill, 1998; Orchard and Rieber, 1999).

Carboniferous and Permian Ellisonia

Von Bitter and Merrill (1983) reconstructed Pennsylvanian species of *Ellisonia, E. conflexa* (Ellison) and *E. latilaminata* von Bitter and Merrill, and identified five kinds of elements, Oz (Pb), Ne (M), Tr (Sa), Pl, and Hi (Sc), in the former, and two kinds of elements, Tr (Sa) and Hi (Sc) in the latter. *Ellisonia conflexa* and *E. latilaminata* were distinguished from each other based on the following diagnosis: the former possesses a well defined basal cavity and the latter exhibits a strongly everted basal cavity in individual elements (von Bitter and Merrill, 1998; Orchard and Rieber, 1999).

The elements of *E. triassica* also carry an everted basal cavity, and those of the present natural assemblage *E. sp. cf. E. triassica* probably possess an everted basal cavity. Thus, the features of the basal cavity are different in *E. conflexa* and *E. triassica*.

The Tr (Sa), Hi (Sc), and Oz (Pb) elements of *E. conflexa* are, however, basically similar in morphology to the Sa (S0), Sc1/2 (S3/4), and Pb (P2) elements of *E. triassica*, and *E. cf. E. triassica*. Furthermore, the Tr (Sa) and Hi (Sc) elements of *E. latilaminata* are also similar to the Sa (S0) and Sc1/2 (S3/4) elements of *E. triassica* and *E. sp. cf. E. triassica*.

Grayson (1990) reported *E. latilaminata* from the Middle Carboniferous in the Canyon Creek, Oklahoma. He identified six kinds of elements in *E. latilaminata*, M, Sa, Sb, Sc, Pa, and Pb. The Pa and Pb elements illustrated by him are of angulate type and basically similar in morphology to the Pa (P1) and Pb (P2) elements of *E. triassica* from the Taho Formation and *E. sp. cf. E. triassica*, respectively.

Swift and Aldridge (1982) reported *Ellisonia* spp. from the Upper Permian of North Yorkshire. Among the elements of *E. sp.*, Pb (pl. 90, fig. 3) is similar to Pt (Pb) elements of *E. triassica* from the Taho Formation and *E. sp. cf. E. triassica*. The M elements (pl. 90, figs. 8 and 14) differ from M of *E. triassica* and are similar to M of *E. conflexa*. As stated earlier, the prioniodinan element of *E. triassica* of Swift and Aldridge (1982) from the Upper Permian is identical to the Pb (P2) element of *E. triassica* and *E. sp. cf. E. triassica*.

Figure 8. *Ellisonia* sp. aff. *E. triassica* Müller, 1956 from the Taho Formation, Shirokawa-cho, Higashi-ku, Ehime Prefecture. All × 50. From carbonate at level 1612A just below the boundary of the Smithian and Spathian. 1. M element, MPC02639. 2. Sa (S) element, MPC02641. 3. Sb (S1) element, MPC02642. 4. Sc (S2) element, MPC02643. 5. Pb (P2) element, MPC02644. 6. Pa (P1) elements, MPC02645, 02646.
Natural assemblage of *Ellisonia* sp. cf. *E. triassica*

triassica.

Von Bitter and Merrill (1983) illustrated some elements of Late Permian ellisonids from Bororga in Russia and the Butte Mountains in Nevada. The elements shown by von Bitter and Merrill (1983) are Pl, Tr (Sa), and Hi (Sc) (Hi1 and Hi2). The Pl, Tr, and Hi1 elements are similar to M, Sa, and Sc1/2 elements of *E. triassica*, respectively.

As mentioned above, some elements of Late Permian ellisonids: Pb element (P2) of *Ellisonia triassica* and E. spp. of Swift and Aldridge (1982); Sa (S0) and Sc1/2 (S3/4) of E. sp. of von Bitter and Merrill (1983), are similar to those of the latest Permian natural assemblage from the Nabejiriya section. Owing to a lack of information on the S1, S2, and P1 elements of the Late Permian ellisonids, it is difficult to judge how closely they relate with the natural assemblage.

Taxonomic relationships of the natural assemblage

The S0, S2, and S3/4 elements of the latest Permian natural assemblage from the Nabejiriya section are identical to the Sa, Sb2, and Sc elements of Smithian *E. triassica* of Sweet (1981, 1988). Furthermore, the P1, P2, and S1 elements of the natural assemblage are very similar to the Pa, Pb, and Sb1 elements of Smithian *E. triassica* from the Taho Formation. A morphologic difference among them is recognized only in profile and size of P1 elements. It is not certain whether the difference is within the range of morphological variation of Pa elements of *E. triassica* or not.

Unfortunately, the M element that is one of the characteristic elements by which to distinguish *E. triassica* from Pennsylvanian and Permian species of *Ellisonia* [e.g., *E. conflexa* (Ellison)] is not observed in the present natural assemblage. Thus, the natural assemblage is referred to *E. sp.* cf. *E. triassica* Müller herein.

Sweet (1988) emphasized that the *Ellisonia* apparatus is characterized by the possession of “enantiothamniform” breviform digyrate elements in the Pb (P2) position. As mentioned above, the natural assemblage *E. sp.* cf. *E. triassica* and other species of *Ellisonia* based on discrete elements, however, have no “enantiothamniform” element in any position. Typical “enantiothamniform” elements occupy the S1 (Sb1) position in the Triassic natural assemblage of *Neo-gonolella* sp. (Rieber, 1980; Orchard and Rieber, 1999). Consequently, Lower Triassic *Ellisonia delicatula*, *E. gradata*, *E. robusta*, and *E. torta* proposed by Sweet (1970) as multielement species with “enantiothamniform” elements are probably gonolellids or neospadhidids belonging to the Gondolellidae.

The family Ellisonidae Clark contains six genera including *Ellisonia*, which are characterized by angulate or digyrate elements in the Pa positions (Sweet, 1981, 1988). Permian *Merrillina* Kozur and Mock includes six or seven kinds of elements (Sweet, 1988; Swift and Aldridge, 1985). The Pa elements are basically segminate in structure. The M, Sb, and Pb elements are, however, closely similar to the M, S2, and P2 elements of *E. triassica* and *E. sp.* cf. *E. triassica*. Although the triramous Sa and bipennate Sc elements have fused denticles, they resemble the S0 and S4 elements of the *Ellisonia* species. The morphologic similarity demonstrates a close phylogenetic relationship between *Merrillina* and *Ellisonia*.

The Permian *Sweetina* Wardlaw and Collinson (Sweet, 1988) and the Early Triassic *Hadrodontina* Staesche (Staesche, 1964; Sweet, 1981, 1988; Perri, 1991), *Furnishius* Clark (Sweet, 1981, 1988), and *Pachycladina* Staesche (Staesche, 1964; Sweet, 1981, 1988; Kolar-Jurkovsek and Jurkovsek, 1996) contain extensiform digyrate Sb elements somewhat similar to the Sa or S2 elements of *Ellisonia*. Other elements in these genera are, however, quite different from those of *Ellisonia*; the Sa elements are biramous in structure in *Sweetina*, *Hadrodontina*, *Furnishius*, and *Pachycladina*; the Pb (sensu Sweet, 1988) elements are angulate in structure with a secondary row in *Hadrodontina* and are triradiate extensiform digyrates in *Furnishius* and *Sweetina*.

Sweet (1988) assumed the origin of *Ellisonia* to be Mississippian *Idioprioniodus* Gunnell or a closely related genus, based on the occurrence of “enantiothamniform” elements in the Pb position. As mentioned above, “enantiothamniform” elements are not present in any position in the *Ellisonia* apparatus. Almost all kinds of elements in the *Idioprioniodus* apparatus (Baesemann, 1973; Merrill and Merril, 1974; Sweet, 1988; Rexroad, 1993) are quite different in morphology from those of *Ellisonia*. In *Idioprioniodus*, the Pa elements are digyrate pectiform without any posterior process and the M elements are dolabrate. Furthermore, the processes are very short in S elements. Thus, it is difficult to regard *Idioprioniodus* as an ancestral taxon of *Ellisonia*. Von Bitter and Merrill (1998) considered that *Idioprioniodus* is a likely ancestor of the Pennsylvanian *Gondojella*, based on their recognition of an evolutionary trend of reduction of the posterior process in the anguliplate Pa elements.

The genus *Ellisonia* has been assigned to the order *Prioniodinida* Sweet that is characterized by digyrate elements in the P region (Sweet, 1988; Sweet and Donoghue, 2001). The well preserved apparatus of Upper Devonian *Oulodus* Branson and Mehl, recov-
erred from the gut region of a palaeoniscoid fish, comprises a single unpaired triramous Sa, single pairs of dolabrate M, digyrate Sb, Sd, Pa, and Pb, and two pairs of bipennate Sc elements (Nicoll, 1977, 1985). The Sb, Sd, Sc, Pa, and Pb elements have considerable similarity to the S2, S1, S4, P1, and P2 elements of E. sp. cf. E. triassica and E. triassica, respectively.

The complete apparatus of Upper Mississippian Kladosognathus Rexroad, recovered from the midgut of Typhloesus wellsi (Melton and Scott), has a pair of dolabrate M, one triramous Sa, two pairs of bipennate Sb and Sc, a pair of bipennate (modified tertiopedate) Pa, and a pair of bipennate Pb elements (Purnell, 1993). All of the elements are markedly different in morphology from those of Ellisonia.

The order Ozarkodinida is distinguished from the order Prioniodinida by the possession of carminate and angulate elements or their platformed analogues in P positions (Sweet, 1988; Sweet and Donoghue, 2001). Some species referring to the order Ozarkodinida contain elements similar to those of Ellisonia.

Silurian Ozarkodina pirata reconstructed by Uyeno and Barnes (1983) based on isolated elements is composed of dolabrate M, biramous Sa, extensiform digyrate Sa-b and Sb, bipennate Sc, carminate P1 and P2 elements. Of the seven elements, Sa-b, Sb, Sc, Pa, and Pb are similar to S1, S2, S4, P1, and P2 elements of E. sp. cf. E. triassica, respectively.

Silurian Ctenognathodus murchisoni (Pander) reconstructed by Aldridge and Jeppson (1984) has breviform digyrate M, biramous Sa, arched digyrate Sb, bipennate Sc, carminate Pa, and angulate Pb elements. The Sb, Sc, and Pb elements are similar to the S1, S4, and P2 elements of E. sp. cf. E. triassica, respectively.

Thus, the E. sp. cf. E. triassica and E. triassica apparatuses are more closely related to some taxa in the Ozarkodinida than they are to other Prioniodinida. The “dogyrate” Pa elements in the Prioniodinida demonstrate various morphologic characteristics: extensiform digyrate “prioniodiniform” structure (e.g., Oulodus; triangulate “ozarkodiniform” (e.g., Ellisonia, Pachycladina), triradiate extensiform digyrate structure (e.g., Sweetina and Furnishius); bipennate (modified tertiopedate) structure (e.g., Kladosognathus); segminate structure (e.g., Merrillina), and segminate-like digyrate structure (e.g., Idiopriioniodus). These “dogyrate” Pa elements in the Prioniodinida presumably do not necessarily represent monophyletic taxa.

Sweet and Donoghue (2001) pointed out that “some prioniodontides, a group united on possession in the P region of pastinate elements or their platformed equivalents, are more closely related to ozarkodinides than they are to other prioniodontides, that is, they share a common ancestor with ozarkodinides that they do not share with other prioniodontides.”

The understanding of the phylogenetic relationships between Ellisonia and other taxa will progress, if evolutionary histories are clarified among various shaped digyrate Pa (P1) elements; distinction is established between Pa (P1) and Pb (P2) elements; division of Sb elements into Sb1 (S1) and Sb2 (S2) ones is accomplished; and assessment of ramiform elements is defined at several taxonomic levels.

The genus Ellisonia is assigned to the order Prioniodinida herein, following the proposal of Sweet (1988), and Sweet and Donoghue (2001).

Systematic paleontology

Phylum Chordata
Subphylum Vertebrata
Class Conodonta
Subclass Conodonti
Order Prioniodinida
Family Ellisonidae
Genus Ellisonia Müller, 1956

Type species.—Ellisonia triassica Müller, 1956

Ellisonia sp. cf. E. triassica Müller, 1956

Figures 4, 5

Material.—A natural assemblage consisting of part and counterpart, MPC02627 and MPC02628, respectively, from Bed Rz-3 of the Nabejiriyama section in the Nishizaka Unit. They are deposited at the Department of Geology and Paleontology, National Science Museum, Tokyo.

Description.—The natural assemblage is composed of 11 elements, single pairs of angulate P1 and P2, a single unpaired symmetrical S0, a pair of deeply arched extensiform digyrate S1, a pair of gently arched extensiform digyrate S2, and bipennate dextral S3 and S4 elements. The sinistral S3 and S4 and a pair of M elements are not observed. All elements possess large and blunt processes and bear discrete denticles.

P1 element: Unit about 850 μm long. Anterior process relatively long and has 3 or 4 discrete denticles. Denticles tend to increase in length and inclination toward posterior. Posterior process short and carries 2 denticles. Dentine just before cusp is about 470 μm long. Cusp is about 600 μm long and blunt.

P2 element: Anterior process about 590 μm long and carries 4 discrete denticles. Denticles relatively long, and tend to increase posteriorly in length and inclination. Posterior process about 400 μm long and...
bends gently inward, and bears 2 or 3 discrete denticles. Cusp is about 890 μm long and about twice as long as denticle just before cusp.

S0 element: Lateral and posterior processes meet at an angle of about 80 degrees in lateral view. Lateral processes stout and probably carry 2 or 3 denticles on each. Posterior process is about 690 μm long and bears 3 discrete denticles. Denticle of anterior first is short and highly isolated from cusp. Denticle on distal end is as long as posterior process. Cusp is just behind a small denticle on lateral process and probably very large.

S1 element: Unit is deeply arched. Anterior and posterior processes about 540 μm and 560 μm long, respectively, and carry 5 denticles. Denticles on both processes gently curve inward and increase in length and inclination toward posterior. Cusp is long and slender.

S2 element: Unit is gently arched. Anterior and posterior processes about 280 μm and 560 μm long, and carry 4 and 5 discrete denticles, respectively. Denticles on both processes tend to increase posteriorly in length and inclination. Cusp is slender and moderate in size.

S3 element: Antero-posterior process stout and large. Anterior process more than 490 μm long, extends downward, curves strongly inward, and carries 2 or more discrete denticles. Posterior process about 1000 μm long and has 5 discrete denticles. Denticles tend to increase posteriorly in inclination and length, and about 780 μm long in anterior fourth. Cusp is more than 900 μm long.

S4 element: Unit large and gently arched. Anterior process about 370 μm long, curves slightly inward and bears a large denticle as long as 770 μm. Posterior process about 950 μm long and bears 5 discrete denticles. Denticles long in anterior third and fourth. Cusp is about 1210 μm long.

Remarks: The S0 element is very similar to *Ellisonia triassica*, the type species of the genus *Ellisonia*, described by Müller (1956). It is also similar to the U and Sa elements of Sweet (1970, 1981). The S1 elements are similar to Sb1 of *E. triassica* from the Tahoe Formation. The S2 elements are identical to *Lonchodina triassica* described by Müller (1956) and the Sb element illustrated by Sweet (fig. 101-3b, 1981). The S3 and S4 elements are similar to each other but are apparently different in morphology of the anterior process and denticulation. The S3 and S4 elements are probably identical to *Hindeodella nevadensis* Müller and *H. raridenticulata* Müller described by Müller (1956), respectively. The P2 elements are similar to the LF element of *E. triassica* illustrated by Sweet (pl. 5, fig. 20, 1970), but significantly different in morphology from the breviform digyrate Pb element of *E. triassica* illustrated by Sweet (1981, 1988). The P1 elements are rather different in morphology from the Pa element of *E. triassica* illustrated by Sweet (1981, 1988) in having a long cusp and 2 to 4 discrete denticles on each short anterior and posterior process. The P1 elements are morphologically different from the Pa elements of *E. triassica* from the Tahoe Formation in possessing a relatively short cusp and a very large unit. The morphologic difference may taxonomically distinguish this natural assemblage from *E. triassica* to the extent that it will be assigned to a new species of *Ellisonia*. On the basis of much material, further study on the morphologic variation within Pa elements of *E. triassica* is required to settle the conclusion.

Acknowledgments

Our deep gratitude is expressed to Hisayoshi Igo, Emeritus Prof. of Institute of Geoscience, University of Tsukuba, for critical review of the manuscript and valuable suggestions. We would like to express our sincere appreciation to Peter von Bitter of Department of Palaeontology, Royal Ontario Museum, Canada and Michael J. Orchard, Geological Survey of Canada, for critical review and constructive comments on this manuscript. We are indebted to Makoto Manabe, National Science Museum, Tokyo, for critical reading of the first version of this manuscript.

References

Grayson, Jr., R. C., 1990: Canyon Creek: A significant exposure of a predominantly mudrock succession recording essentially continuous deposition from the Late Devonian through the Middle Pennsylvanian. Oklahoma Geological Survey Guidebook 27, p. 85–114.

Ishiga, H., Kito, T. and Imoto, N., 1982b: Middle Permian

