Translator Disclaimer
1 February 2000 Time-resolved Fluorescence Spectra of Arterial Fluorescent Compounds: Reconstruction with the Laguerre Expansion Technique
Author Affiliations +
Abstract

The time-resolved fluorescence spectra of the main arterial fluorescent compounds were retrieved using a new algorithm based on the Laguerre expansion of kernels technique. Samples of elastin, collagen and cholesterol were excited with a pulsed nitrogen laser and the emission was measured at 29 discrete wavelengths between 370 and 510 nm. The expansion of the fluorescence impulse response function on the Laguerre basis of functions was optimized to reproduce the observed fluorescence emission. Collagen lifetime (5.3 ns at 390 nm) was substantially larger than that of elastin (2.3 ns) and cholesterol (1.3 ns). Two decay components were identified in the emission decay of the compounds. For collagen, the decay components were markedly wavelength dependent and hydration dependent such that the emission decay became shorter at higher emission wavelengths and with hydration. The decay characteristics of elastin and cholesterol were relatively unchanged with wavelength and with hydration. The observed variations in the time-resolved spectra of elastin, collagen and cholesterol were consistent with the existence of several fluorophores with different emission characteristics. Because the compounds are present in different proportions in healthy and atherosclerotic arterial walls, characteristic differences in their time-resolved emission spectra could be exploited to assess optically the severity of atherosclerotic lesions.

Jean-Michel I. Maarek, Laura Marcu, Wendy J. Snyder, and Warren S. Grundfest "Time-resolved Fluorescence Spectra of Arterial Fluorescent Compounds: Reconstruction with the Laguerre Expansion Technique," Photochemistry and Photobiology 71(2), 178-187, (1 February 2000). https://doi.org/10.1562/0031-8655(2000)071<0178:TRFSOA>2.0.CO;2
Received: 5 July 1999; Accepted: 1 November 1999; Published: 1 February 2000
JOURNAL ARTICLE
10 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
ARTICLE IMPACT
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top