How to translate text using browser tools
1 August 2008 Terahertz Radiation Increases Genomic Instability in Human Lymphocytes
Avital Korenstein-Ilan, Alexander Barbul, Pini Hasin, Alon Eliran, Avraham Gover, Rafi Korenstein
Author Affiliations +

REFERENCES

1.

J. F. Federici, B. Schulkin, and F. Huang . THz imaging and sensing for security applications—explosives, weapons and drugs. Semiconductors Sci. Tech 20:S266–S280.2005.  Google Scholar

2.

E. Berry, J. W. Handley, and A. J. Fitzgerald . Multispectral classification techniques for terahertz pulsed imaging: an example in histopathology. Med. Eng. Phys 26:423–430.2004.  Google Scholar

3.

T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, and M. Koch . Audio signal transmission over THz communication channel using semiconductor modulator. Elect. Lett 40:124–126.2004.  Google Scholar

4.

G. Markelz, A. Roitberg, and E. J. Heilweil . Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz. Chem. Phys. Lett 320:42–48.2000.  Google Scholar

5.

P. Woolard, P. Zhao, and H. L. Cui . THz-frequency intrinsic oscillations in double-barrier quantum well systems. Phys. B Condens. Matter 314:108–112.2002.  Google Scholar

6.

R. Globus, D. L. Woolard, and T. Khromova . THz-spectroscopy of biological molecules. J. Biol. Phys 29:89–100.2003.  Google Scholar

7.

R. Scarfi, M. Romano, and R. Di Pietro . THz exposure of whole blood for the study of biological effects on human lymphocytes. J. Biol. Phys 29:171–177.2003.  Google Scholar

8.

R. H. Clothier and N. Bourne . Effects of THz exposure on human primary keratinocyte differentiation and viability. J. Biol. Phys 29:179–185.2003.  Google Scholar

9.

A. Doria, G. P. Gallerano, E. Giovenale, G. Messina, A. Lai, A. Ramundo-Orlando, V. Sposato, M. D'Arienzo, A. Perrotta, and O. Zeni . THz radiation studies on biological systems at the ENEA FEL facility. Infrared Phys. Tech 45:339–347.2004.  Google Scholar

10.

M. Feychting, A. Ahlborn, and L. Kheifets . EMF and health. Annu. Rev. Pub. Health 26:165–189.2005.  Google Scholar

11.

P. Duesberg and R. Li . Multistep carcinogenesis: a chain reaction of aneuploidizations. Cell Cycle 2:202–210.2003.  Google Scholar

12.

P. A. Jones Overview of cancer epigenetics. Semin. Hematol 42:S3–S8.2005.  Google Scholar

13.

L. A. Loeb Mutator phenotype may be required for multistage carcinogenesis. Cancer Res 51:3075–3079.1991.  Google Scholar

14.

A. Korenstein-Ilan, A. Amiel, S. Lalezari, M. Lishner, and L. Avivi . Allele-specific replication associated with aneuploidy in blood cells of patients with hematologic malignancies. Cancer Genet. Cytogenet 139:97–103.2002.  Google Scholar

15.

M. Fukuda and A. Sun . The DNA-instability test as a specific marker of malignancy and its application to detect cancer clones in borderline malignancy. Eur. J. Histochem 49:11–26.2005.  Google Scholar

16.

S. Gagos and I. Irminger-Finger . Chromosome instability in neoplasia: Chaotic roots to continuous growth. Int. J. Biochem. Cell Biol 37:1014–1033.2005.  Google Scholar

17.

O. M. Sieber, K. Heinimann, and I. P. Tomlinson . Genomic instability—the engine of tumorigenesis? Nat. Rev. Cancer 3:701–708.2003.  Google Scholar

18.

S. Henikoff and Y. Dalal . Centromeric chromatin: what makes it unique? Curr. Opin. Genet. Dev 15:177–184.2005.  Google Scholar

19.

S. Selig, K. Okumura, D. C. Ward, and H. Cedar . Delineation of DNA-replication time zones by fluorescence in situ hybridization. EMBO J 11:1217–1225.1992.  Google Scholar

20.

B. Mukherjee, V. V V. S. Murty, and R. S K. Chaganti . Detection of cell-cycle stage by fluorescence in situ hybridization—Its application in human interphase cytogenetics. Cytogenet. Cell Genet 61:91–94.1992.  Google Scholar

21.

R. L. Abrams Coupling losses in hollow waveguide laser resonators. IEEE J. Quantum Electron 8:838–843.1972.  Google Scholar

22.

A. Yariv Optical Electronics in Modern Communications in Oxford series in Electrical and Computer, 5th ed. Oxford University Press, New York, 1997. Google Scholar

23.

J. T. Kindt and C. A. Schmuttenmaer . Far-infrared dielectric properties of polar liquids probed by femtosecond tetrahertz pulse spectroscopy. J. Phys. Chem 100:10373–10379.1996.  Google Scholar

24.

M. G. Brown and J. H. Lawce . In The AGT Cytogenetics Laboratory Manual (M. J. Barch, T. Knutsen and J. L. Spurbeck, Eds.), pp. 77– 172. Lippincott-Raven, Philadelphia, PA, 1997. Google Scholar

25.

D. P. Cahill, C. Lengauer, J. Yu, G. J. Riggins, J. K V. Willson, S. D. Markowitz, K. W. Kinzler, and B. Vogelstein . Mutations of mitotic checkpoint genes in human cancers. Nature 392:300–304.1998.  Google Scholar

26.

D. Pellman Aneuploidy and cancer. Nature 446:38–39.2007.  Google Scholar

27.

R. Sotillo, E. Hernando, E. Díaz-Rodríguez, J. Teruya-Feldstein, C. Cordón-Cardo, S. W. Lowe, and R. Benezra . Mad2 overexpression promotes aneuploidy and tumorigenesis in mice. Cancer Cell 11:9–23.2007.  Google Scholar

28.

B. A A. Weaver, A. D. Silk, C. Montagna, P. Verdier-Pinard, and D. W. Cleveland . Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell 11:25–36.2007.  Google Scholar

29.

A. H. Ting, K. M. McGarvey, and S. B. Baylin . The cancer epigenome—components and functional correlates. Genes Dev 20:3215–3231.2006.  Google Scholar

30.

S. Munne, M. Bahce, M. Sandalinas, T. Escudero, C. Marquez, E. Velilla, P. Colls, M. Oter, M. Alikani, and J. Cohen . Differences in chromosome susceptibility to aneuploidy and survival to first trimester. Reprod. Biomed. Online 8:81–90.2004.  Google Scholar

31.

L. Zhang, W. Yang, A. E. Hubbard, and M. T. Smith . Nonrandom aneuploidy of chromosomes 1, 5, 6, 7, 8, 9, 11, 12, and 21 induced by the benzene metabolites hydroquinone and benzenetriol. Environ. Mol. Mutagen 45:388–396.2005.  Google Scholar

32.

K. S. Breger, L. Smith, M. S. Turker, and M. J. Thayer . Ionizing radiation induces frequent translocations with delayed replication and condensation. Cancer Res 64:8231–8238.2004.  Google Scholar

33.

R. Mazor, A. Korenstein-Ilan, A. Barbul, Y. Eshet, A. Shahadi, E. Jerby, and R. Korenstein . Increased levels of numerical chromosome aberrations after in vitro exposure of human peripheral blood lymphocytes to radiofrequency electromagnetic fields for 72 hours. Radiat. Res 169:28–37.2008.  Google Scholar

34.

Y-C. Kuo, N-S. Yang, C-J. Chou, L-C. Lin, and W-J. Tsai . Regulation of cell proliferation, gene expression, production of cytokines, and cell cycle progression in primary human T lymphocytes by piperlactam S isolated from Piper kadsura. Mol. Pharmacol. 58:1057–1066. (2000). Google Scholar

35.

A. Nagler, A. Korenstein-Ilan, A. Amiel, and L. Avivi . Granulocyte colony-stimulating factor generates epigenetic and genetic alterations in lymphocytes of normal volunteer donors of stem cells. Exp. Hematol 32:122–130.2004.  Google Scholar

36.

D. Y. Takeda and A. Dutta . DNA replication and progression through S phase. Oncogene 24:2827–2843.2005.  Google Scholar

37.

ICNIRP, Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). Health Phys 74:494–522.1998.  Google Scholar

38.

NCRP, Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields. Report 86, National Council on Radiation Protection and Measurements, Bethesda, 1986. Google Scholar

39.

M. Mashevich, D. Folkman, A. Kesar, A. Barbul, R. Korenstein, E. Jerby, and L. Avivi . Exposure of human peripheral blood lymphocytes to electromagnetic fields associated with cellular phones leads to chromosomal instability. Bioelectromagnetics 24:82–90.2003.  Google Scholar

40.

W. N. Mei, M. Kohli, E. W. Prohofsky, and L. L. Van Zandt . Acoustic modes and nonbonded interactions of the double helix. Biopolymers 20:733–752.1981.  Google Scholar

41.

L. Young, V. V. Prabhu, and E. W. Prohovsky . Calculation of far-infrared absorption in polymer DNA. Phys. Rev. A 39:3173–3180.1989.  Google Scholar

42.

Y. Feng and E. W. Prohofsky . Vibrational fluctuations of hydrogen bonds in a DNA double helix with nonuniform base pairs. Biophys. J 57:547–553.1990.  Google Scholar

43.

D. H. Lin, A. Matsumoto, and N. Go . Normal mode analysis of a double-stranded DNA dodecamer d(CGCGAATTCGCG). J. Chem. Phys 107:3684–3690.1997.  Google Scholar

44.

T. Weidlich, S. M. Lindsay, W. L. Peticolas, and G. A. Thomas . Low-frequency raman-spectra of z-DNA. J. Biomol. Struct. Dyn 7:849–858.1990.  Google Scholar
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top